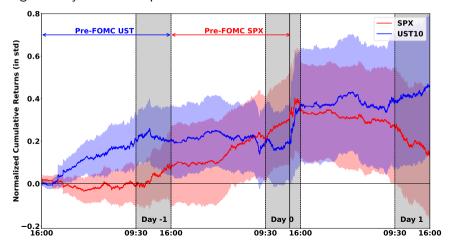
The Pre-FOMC Drift and the Secular Decline in Long-Term Interest Rates

Jun Pan

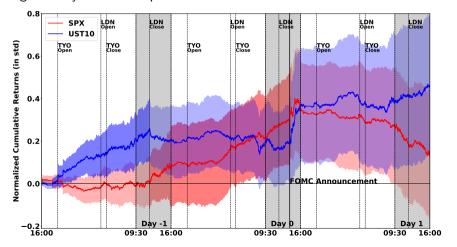
Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiao Tong University

> CUHK-RAPS-RCFS Conference December 10, 2025

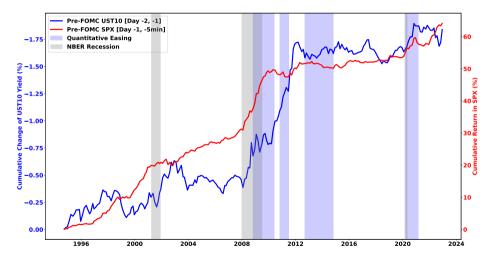

Joint work with Qing Peng from SAIF

Motivations and Research Questions

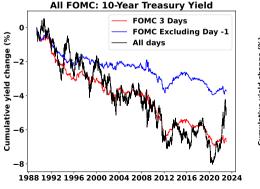
- This paper examines the pricing of Treasury bonds before FOMC announcements, while studies in economics focus mostly on post-FOMC reactions (e.g., Kuttner 2001, Gurkaynak et al. 2005, Nakamura and Steinsson 2018).
- Motivated by two studies at the intersection of the Fed and the financial markets:
 - ▶ Lucca and Moench (2015): Large and significant pre-FOMC announcement drift in U.S. equity, but not in U.S. Treasury bonds.
 - ▶ Hillenbrand (2025): The three-day window (day -1, 0, and 1) around the FOMC announcements captures the entire secular decline in long-term interest rates.
- Our research questions:
 - ▶ Is there a pre-FOMC drift in U.S. Treasury bonds?
 - ▶ Its contribution to the secular decline in interest rates.
 - ▶ Its economic mechanism. (Unlike the equity market, the economic drivers of the Treasury market can be more precisely examined.)

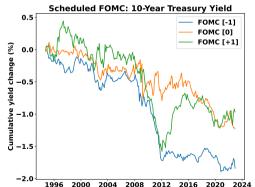

Main Contributions: The Pre-FOMC Drift in 10-Year Treasury Bond

• Contrary to Lucca and Moench (2015), we find significant pre-FOMC drift in UST, occurring one day before the pre-FOMC drift in SPX.


Main Contributions: The Pre-FOMC Drift in 10-Year Treasury Bond

• Contrary to Lucca and Moench (2015), we find significant pre-FOMC drift in UST, occurring one day before the pre-FOMC drift in SPX.

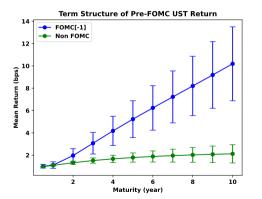

Main Contributions: Common Mechanism for Pre-FOMC Stock and Bond


• Over the long run, a striking similarity between the pre-FOMC drift in stock and bond.

Main Contributions: The Secular Decline in 10-Year Treasury Yield

- Contributes importantly to the secular decline in interest rates documented by Hillenbrand (2025).
- Since September 1994, the 10-year yield drops cumulatively by -3.42%, of which the contribution from FOMC[-1] is -1.84%, compared with -1.23% from FOMC[0], and -0.97% from FOMC[+1].

Related Literature


- The pre-FOMC drift in equity and currency markets
 - ▶ Lucca and Moench (2015), Mueller, Tahbaz-Salehi, and Vedolin (2017).
 - ► Cieslak, Morse and Vissing-Jorgensen (2019), Hu, Pan, Wang and Zhu (2022), Ai, Bansal, and Han (2022).
- Time-varying bond risk premium and term premium
 - ► Fama and Bliss (1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005).
 - ► Kim and Wright (2005), Adrian, Crump and Moench (2013).
- Secular decline in long-term interest rates
 - ▶ Hillenbrand (2025), Bauer and Rudebusch (2020), Drechsler, Savov and Schnabl (2020).
- Monetary policy shocks
 - ► Kuttner (2001), Gürkaynak, Sack and Swanson (2005), Nakamura and Steinsson (2018), and Bauer and Swanson (2022).

A Road Map

- I. The Pre-FOMC Drift in UST
 - (a) The term structure of policy-driven short rates and market-driven long rates.
 - (b) Model-based decomposition: yield = term premium + expected future rates.
- II. The Risk Premium Channel
 - (a) Mechanism: Accumulation of heightened uncertainty and its subsequent resolution.
 - (b) Heightened unemployment uncertainty as the key driver of pre-FOMC UST.

Part I(a): The Pre-FOMC Drift in UST – Significant for Long-Term Bonds

• The pre-FOMC drift in UST increases with bond maturity and is insignificant for short-term bonds. (FF4 is the 3-month ahead Fed fund future yield).

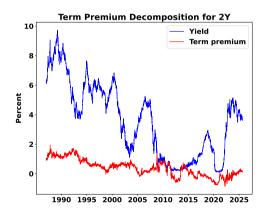
Δ Zero Coupon Yield (bps)									
	UST10	UST5	UST2	FF4					
FOMC[-1]	-0.81	-0.72	-0.37	0.08					
	[-2.42]	[-2.18]	[-1.20]	[0.29]					
FOMC[0]	-0.54	-0.6	-0.41	-0.43					
	[-1.20]	[-1.25]	[-0.98]	[-1.22]					
FOMC[1]	-0.43	-0.18	-0.09	-0.15					
	[-0.86]	[-0.40]	[-0.24]	[-0.49]					
All days	-0.05	-0.04	-0.02	-0.01					
	[-0.71]	[-0.57]	[-0.32]	[-0.20]					

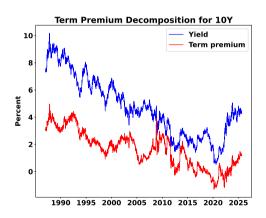
Part I(a): The Pre-FOMC UST – Not About the Short Rate

$$\Delta \mathsf{UST10}_t = a + \mathbf{b}_1 \, \mathbb{1}_{t = \mathsf{FOMC[-1]}} + \mathbf{b}_2 \, \Delta \mathsf{FF4}_t + \mathbf{b}_3 \, \Delta \mathsf{FF4}_t \times \mathbb{1}_{t = \mathsf{FOMC[-1]}} + \epsilon_t$$

Const	-0.02 [-0.33]	-0.05 [-0.71]	-0.01 [-0.20]
$\mathbb{1}_{FOMC[-1]}$	-0.79** [-2.32]	[-0.71]	-0.90*** [-2.69]
Δ FF4		0.63*** [14.22]	0.65*** [14.10]
$\Delta FF4 \times \mathbb{1}_{FOMC[-1]}$			-0.36** [-2.45]
R-sqrd (%) N Obs	0.06 7,079	12.65 7,079	12.96 7,079

- The usual comovement between the long and short rates is significantly reduced on FOMC[-1], indicating a driver to the long rate not shared by the short rate.
- Risk premium is an important component of the long rate, but not the short rate.

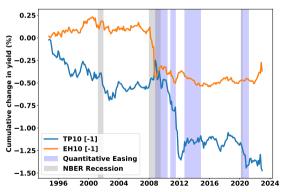

Part I(a): The Pre-FOMC UST – Not Predictive of the Announcement

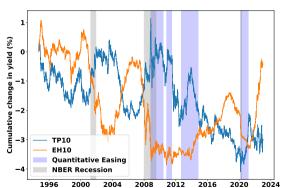

		FOMC Announcement Window [-10min,+20min]							
	Fed Decision	Eurodollar 1Q	TNOTE 2Y	TNOTE 5Y	TNOTE 10Y	S&P500			
const	2.00	-0.44*	-0.41	-0.24	-0.14	-2.97			
	[0.79]	[-1.86]	[-1.37]	[-0.80]	[-0.54]	[-0.91]			
Δ UST10[-1]	0.14	-0.01	0.05	0.05	0.01	0.37			
	[0.57]	[-0.19]	[0.77]	[0.67]	[0.14]	[0.49]			
R-sqrd (%)	0.12	0.02	0.3	0.23	0.01	0.13			
N	226	226	226	226	226	226			

Part I(b): Decomposing UST Yield into TP and EH

• Following Adrian, Crump, and Moench (2013)

Yield = EH (expectation of short-term rates) + TP (term premium)

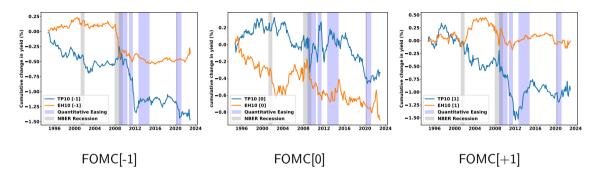

Part I(b): The Pre-FOMC UST – Driven by Term Premium


- The average daily change in 10-year yield is significant on FOMC[-1], and sizeable but insignificant for FOMC[0] and FOMC[1].
- Moreover, it is the term premium component that drives the pre-FOMC drift on FOMC[-1], indicating a risk-premium channel.

UST10=TP10+EH10					UST2=TP2+EH2				
	Δ UST10	$\Delta TP10$	$\Delta {\sf EH10}$		Δ UST2	$\Delta TP2$	$\Delta {\sf EH2}$		
FOMC[-1]	-0.81	-0.65	-0.16		-0.37	-0.34	-0.03		
	[-2.42]	[-2.05]	[-0.70]		[-1.20]	[-1.76]	[-0.10]		
FOMC[0]	-0.54	-0.15	-0.4		-0.41	0.18	-0.6		
	[-1.20]	[-0.39]	[-1.23]		[-0.98]	[0.86]	[-1.54]		
FOMC[1]	-0.43	-0.43	-0.004		-0.09	0.21	-0.31		
	[-0.86]	[-0.87]	[-0.01]		[-0.24]	[0.82]	[-0.87]		
All days	-0.05	-0.04	-0.01		-0.02	-0.02	-0.001		
	[-0.71]	[-0.65]	[-0.23]		[-0.32]	[-0.54]	[-0.02]		

Part I(b): A Unique Dominance of Term Premium on FOMC[-1]

• The dominance of TP on FOMC[-1] is more apparent when viewed from a long-term perspective. By contrast, cumulating over all days, both TP and EH are important in driving the 10-year yields.



FOMC[-1]

All Days

Part I(b): Decomposing Hillenbrand (2025) into TP and EH

- The dominance of EH on FOMC[0] supports the "long-run Fed guidance" channel.
- The dominance of TP on FOMC[-1], however, indicates a risk-premium channel.
- Also intriguing is the similarity between FOMC[-1] and FOMC[+1].

Part II(a): The Risk Premium Channel – A Two-Risk Model

• Under Hu, Pan, Wang, and Zhu (2022), the market impact of the announcement

$$D = \bar{D} + \frac{\sigma \epsilon}{\sigma},$$

where ϵ is the news shock, to be released at the FOMC announcement (date 0).

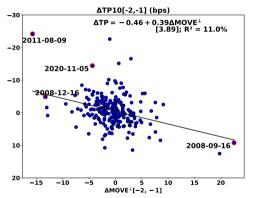
- ullet Central to the model is the presence of the impact uncertainty σ
 - Its variability $V\left(\sigma^2\right) = \lambda^2$ can be dialed up and down via λ .
 - ▶ The same ϵ can have substantially different market impact depending on σ .
 - ▶ Accumulation (date -2): heightened uncertainty in anticipation of FOMC ($\lambda \uparrow$).
 - ▶ Pre-announcement (date -1): Resolution of σ takes place, before the announcement.
- The equilibrium price under a CARA investor with risk aversion α ,

$$P_{-2} = \bar{D} - \alpha \, E\left(\sigma^2\right) - \boxed{\frac{\frac{1}{2}\alpha^3\lambda^2}{1 - \frac{1}{2}\alpha^2\lambda}} \quad \text{and} \quad P_{-1} = \bar{D} - \alpha \, \sigma^2 \, .$$

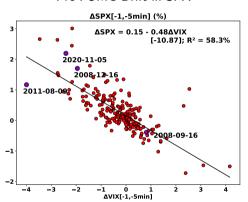
• The pre-announcement drift results from the accumulation of heightened uncertainty $(P_{-2}\downarrow)$ and its subsequent resolution prior to the announcement $(P_{-1}\uparrow)$.

Part II(a): The Risk Premium Channel – Testable Implications

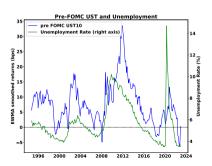
	Accumulation (Date -2)	Pre-Announcement (Date -1)	Announcement (Date 0)
		σ Resolves	ϵ Resolves
Impact Uncertainty Bond Equity	$MOVE^\perp\uparrow$ $VIX\uparrow$	MOVE [⊥] ↓ VIX ↓	
Pricing Bond Equity	UST10↓ SPX↓	UST10 ↑ SPX ↑	

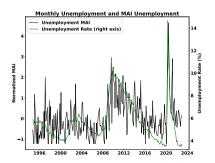

Part II(a): Heightened Uncertainty and its Subsequent Resolution

	lm	pact Uncert	ainty	Pric	ing
	$\Delta {\sf VIX}$	$\Delta MOVE$	$\Delta MOVE^\perp$	Δ UST10	ΔTP10
FOMC[-5]	-0.08	0.32	0.48	0.35	0.17
	[-0.63]	[1.24]	[1.45]	[0.93]	[0.53]
FOMC[-4]	-0.16**	1.13***	1.46***	0.13	0.00
	[-2.08]	[3.96]	[4.50]	[0.33]	[0.00]
FOMC[-3]	0.08	0.16	-0.01	-0.02	-0.23
	[0.75]	[0.65]	[-0.05]	[-0.05]	[-0.73]
FOMC[-2]	0.26***	0.15	-0.39	0.47	0.26
	[2.69]	[0.54]	[-1.29]	[1.14]	[0.78]
FOMC[-1]	0.07	-0.39	-0.52*	-0.79**	-0.65**
	[0.52]	[-1.39]	[-1.88]	[-2.30]	[-2.01]
FOMC[0]	-0.54***	-2.31***	-1.20***	-0.52	-0.15
	[-4.31]	[-7.38]	[-3.57]	[-1.14]	[-0.38]
const	0.01	0.06	0.05	-0.02	0.00
	[0.39]	[1.11]	[0.75]	[-0.26]	[0.04]
N	7,072	7,072	7,072	7,072	7,072
R-sqrd (%)	0.49	1.4	0.74	0.13	0.1


MOVE: bond option implied volatility; MOVE[⊥]: orthogonal to VIX.

Part II(a): Stronger the Resolution, Larger the Pre-FOMC Drift


Pre-FOMC Drift in SPX



• True in both the bond and equity markets: higher degrees of uncertainty resolution are associated with larger pre-FOMC drift.

Part II(b): Heightened Unemployment Uncertainty

- Unemployment is an important driver of the monetary policy the high unemployment rate after 2008 was a major contributor to the three rounds of QEs.
- We find significantly larger pre-FOMC drift in UST amidst higher unemployment rate.
- To find high-frequency evidence, use the Macro Attention Indices (MAI) on unemployment (Fisher, Martineau, and Sheng (2022)) to proxy for the heightened macro uncertainty.

Part II(b): Heightened Unemployment MAI as the Key Driver

$\Delta Yield_{-1} = a + b UMAI_{-3} + \epsilon_{-1}$				$\Delta Yield_{-1} = a + b UMAI_{-3} + \epsilon_{-1}$				$\Delta Yield_{-1} = \alpha$	+ b (UMAI_	₋₃ – UMAI	$_{-5})+\epsilon$
	UST10[-1]	TP10[-1]	EH10[-1]		UST10[-1]	TP10[-1]	EH10[-				
const	-0.78**	-0.60**	-0.18	const	-0.09	0.42	-0.5				
	[-2.41]	[-2.01]	[-0.73]		[-0.08]	[0.35]	[-1.43				
UMAI[-3]	-1.01***	-1.33***	0.32	Δ UMAI[-5,-3]	-0.85***	-0.93***	0.08				
	[-2.90]	[-3.58]	[1.22]		[-2.70]	[-3.30]	[0.50]				
VIX[-3]	0.00	-0.01	0.01	VIX[-3]	-0.03	-0.05	0.02				
	[-0.08]	[-0.20]	[0.30]		[-0.59]	[-0.76]	[0.73]				
R2	3.69	7.39	0.93	R2	3.16	4.54	0.21				
N	226	226	226	N	226	226	226				

- The Unemployment MAI (UMAI), both the level and change, is predictive of the pre-FOMC UST.
- Decomposing the 10-year yield into TP and EH, the predictability is through term premium.
- VIX, the strongest predictor for pre-FOMC SPX, has no predictability for pre-FOMC UST.

Part II(b): Heightened Unemployment MAI – Short and Long Rates

Dependent Variable: Daily Changes in 10-Year Yield									
	Full Sample			ŀ	ligh UMA	AI .	Low UMAI		
Const	-0.02	-0.05	-0.01	-0.02	-0.05	-0.01	-0.05	-0.05	-0.05
	[-0.33]	[-0.71]	[-0.20]	[-0.33]	[-0.71]	[-0.18]	[-0.70]	[-0.71]	[-0.73]
$\mathbb{1}_{FOMC[-1]}$	-0.79**		-0.90***	-1.60***		-1.74***	0.04		0.11
	[-2.32]		[-2.69]	[-3.18]		[-3.45]	[0.09]		[0.29]
FF4		0.63***	0.65***		0.63***	0.65***		0.63***	0.63***
		[14.22]	[14.10]		[14.22]	[14.33]		[14.22]	[13.99]
$FF4*1_{FOMC[-1]}$			-0.36**			-0.48***			-0.05
			[-2.45]			[-3.73]			[-0.22]
R-sqrd (%)	0.06	12.65	12.96	0.12	12.65	13.1	0	12.65	12.65
N	7079	7079	7079	7079	7079	7079	7079	7079	7079

- The reduced comovement between short and long rate on FOMC[-1] occurs under heightened Unemployment MAI.
- By contrast, FOMC[-1] under low Unemployment MAI is similar to that of a normal day insignificant pre-FOMC UST and normal comovement between short and long rates.

Part II(b): Drivers of Pre-FOMC SPX

	Dependent: Pre-FOMC Returns in SPX (basis points)								
Full Sample					High MAI		Low MAI		
Const	-31.64***	-30.74***	-30.91***	-47.80***	-45.53***	-41.70***	-17.64	-17.72	-17.79
	[-2.99]	[-3.04]	[-2.85]	[-3.27]	[-3.25]	[-2.66]	[-0.88]	[-0.88]	[-0.90]
Δ UST10[-1]	-1.48*			-2.87***			-0.03		
	[-1.87]			[-2.64]			[-0.02]		_
$\DeltaTP10[-1]$		-2.10**			-3.10***			-0.32	
		[-2.05]			[-2.82]			[-0.30]	
Δ EH10[-1]			0.83			2.03			0.21
			[0.52]			[0.79]			[0.13]
VIX[-3] level	2.93***	2.88***	2.96***	3.34***	3.21***	3.27***	2.44*	2.45*	2.45**
	[4.76]	[4.79]	[4.70]	[4.29]	[4.21]	[3.93]	[1.97]	[1.97]	[2.02]
R-sqrd (%)	16.33	17.39	15.19	22.12	23.27	18.63	9.9	9.94	9.92
N	226	226	226	113	113	113	113	113	113

- The equity market uncertainty, as captured by the VIX index, is by far the strongest driver of the pre-FOMC drift in SPX.
- Against this backdrop, the pre-FOMC UST, particularly the TP component, can also predict the pre-FOMC SPX, and the predictability is present only under heightened Unemployment MAI.

Conclusions

- We fill an important gap in the pre-FOMC literature by documenting the presence of a significant pre-FOMC drift in the Treasury market.
- Our pre-FOMC result adds to the important observation by Hillenbrand (2025) on the secular decline in long-term interest rates and the three-day FOMC window.
 - ► FOMC[-1]: dominated by TP, indicating a risk-premium channel.
 - ▶ FOMC[0]: dominated by EH, consistent with "long-run Fed guidance."
 - ► FOMC[1]: an intriguing connection between FOMC[-1].
- We offer a common mechanism to explain the pre-FOMC drift in bond and equity.
 - ▶ The accumulation of heightened uncertainty and its subsequent resolution.
 - ▶ A striking similarity between the two pre-FOMC drift over the long run.
 - ▶ Under heightened MAI, pre-FOMC drift in UST can predict that in SPX.