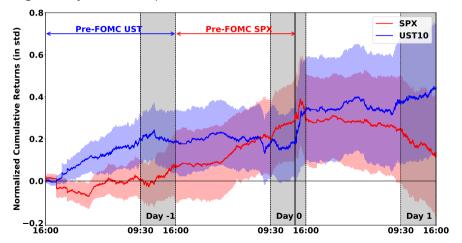
The Pre-FOMC Drift and the Secular Decline in Long-Term Interest Rates

Jun Pan

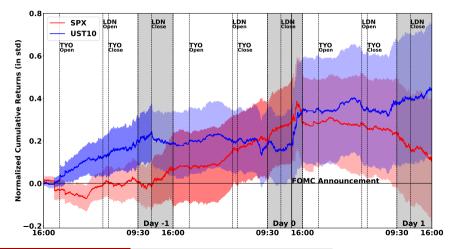
Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiao Tong University

2026 AFA Meetings, Philadelphia January 3, 2026

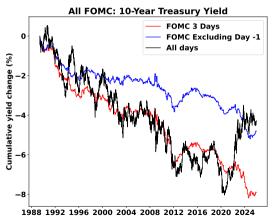

Joint work with Qing Peng from SAIF

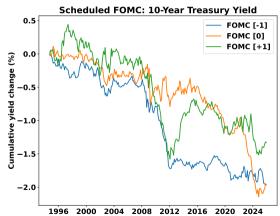
Motivations and Research Questions

- This paper examines the pricing of Treasury bonds before FOMC announcements, different from existing literature on post-FOMC reactions (e.g., Kuttner 2001, Gurkaynak et al. 2005, Nakamura and Steinsson 2018).
- Motivated by two studies at the intersection of the Fed and the financial markets:
 - ▶ Lucca and Moench (2015): Large and significant pre-FOMC announcement drift in U.S. equity, but not in U.S. Treasury bonds.
 - ▶ Hillenbrand (2025): The three-day window (day -1, 0, and 1) around the FOMC announcements captures the entire secular decline in long-term interest rates.
- Our research questions:
 - ▶ Is there a pre-FOMC drift in U.S. Treasury bonds?
 - ▶ Its contribution to the secular decline in interest rates.
 - ▶ Its economic mechanism. (Unlike the equity market, the economic drivers of the Treasury market can be more precisely examined.)


Main Contributions: The Pre-FOMC Drift in 10-Year Treasury Bond

• Contrary to Lucca and Moench (2015), we find significant pre-FOMC drift in UST, occurring one day before the pre-FOMC drift in SPX.


Main Contributions: The Pre-FOMC Drift in 10-Year Treasury Bond


• Contrary to Lucca and Moench (2015), we find significant pre-FOMC drift in UST, occurring one day before the pre-FOMC drift in SPX.

Main Contributions: The Secular Decline in 10-Year Treasury Yield

• Contributes importantly to the secular decline in interest rates documented by Hillenbrand (2025).

Related Literature

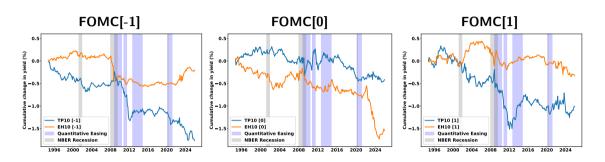
- The pre-FOMC drift in equity and currency markets
 - ▶ Lucca and Moench (2015), Mueller, Tahbaz-Salehi, and Vedolin (2017).
 - ► Cieslak, Morse and Vissing-Jorgensen (2019), Hu, Pan, Wang and Zhu (2022), Ai, Bansal, and Han (2022).
- Time-varying bond risk premium and term premium
 - ► Fama and Bliss (1987), Campbell and Shiller (1991), Cochrane and Piazzesi (2005).
 - ► Kim and Wright (2005), Adrian, Crump and Moench (2013).
- Secular decline in long-term interest rates
 - ▶ Hillenbrand (2025), Bauer and Rudebusch (2020), Drechsler, Savov and Schnabl (2020).
- Monetary policy shocks
 - ► Kuttner (2001), Gürkaynak, Sack and Swanson (2005), Nakamura and Steinsson (2018), and Bauer and Swanson (2022).

A Road Map

- I. The pre-FOMC drift in UST
 - (a) Significant only for long-term bonds; not about the short rate or the announcement.
 - (b) Driven by the term premium (TP) component, not expected short rates (EH).
 - (c) Heightened unemployment uncertainty as the key driver of pre-FOMC UST.
- II. The risk-premium channel as the common mechanism for pre-FOMC stock and bond
 - (a) Mechanism: accumulation of heightened uncertainty and its subsequent resolution.
 - (b) The pre-FOMC UST is predictive of the pre-FOMC SPX.

Part I(a): The Pre-FOMC UST – Significant only for Long-Term Bonds

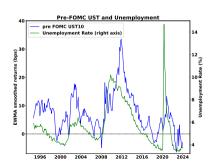
	Δ Zero Coupon Yield (bps)					
	UST10	UST5	UST2	FF4		
FOMC[-1]	-0.79	-0.63	-0.24	0.33		
	[-2.40]	[-1.91]	[-0.77]	[1.17]		
FOMC[0]	-0.78	-0.96	-0.75	-0.28		
	[-1.82]	[-2.04]	[-1.79]	[-1.01]		
FOMC[1]	-0.53	-0.33	-0.36	-0.43		
	[-1.11]	[-0.75]	[-0.96]	[-1.68]		
All days	-0.04	-0.04	-0.03	-0.02		
	[-0.59]	[-0.59]	[-0.49]	[-0.50]		


FF4 is the 3-month ahead Fed fund futures rate.

Part I(b): The Pre-FOMC UST – Driven by Term Premium

The ACM decomposition (Adrian, Crump, and Moench 2013)
UST Yield = TP (term premium)+ EH (expectation of short-term rates)

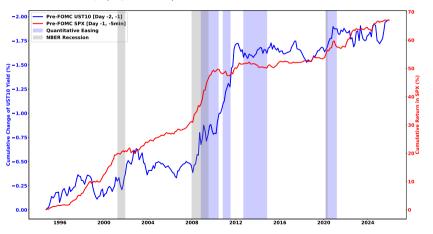
	10 Year			2 Year			
	Δ UST	ΔTP	ΔEH	ΔUST	ΔTP	ΔEH	
FOMC[-1]	-0.79	-0.71	-0.08	-0.25	-0.33	0.08	
	[-2.40]	[-2.36]	[-0.36]	[-0.80]	[-1.74]	[0.27]	
FOMC[0]	-0.78	-0.17	-0.62	-0.75	-0.01	-0.74	
	[-1.82]	[-0.47]	[-1.91]	[-1.79]	[-0.05]	[-1.94]	
FOMC[1]	-0.53	-0.4	-0.13	-0.36	0.12	-0.48	
	[-1.11]	[-0.85]	[-0.46]	[-0.96]	[0.47]	[-1.38]	
All days	-0.04	-0.02	-0.02	-0.03	-0.01	-0.02	
	[-0.59]	[-0.34]	[-0.47]	[-0.49]	[-0.27]	[-0.39]	


Part I(b): Decomposing Hillenbrand (2025) into TP and EH

- The dominance of EH on FOMC[0] supports the "long-run Fed guidance" channel.
- The dominance of TP on FOMC[-1], however, indicates a risk-premium channel.
- Also intriguing is the similarity between FOMC[-1] and FOMC[+1].

Part I(c): Heightened Unemployment Uncertainty

- Unemployment is an important driver of the monetary policy the high unemployment rate after 2008 was a major contributor to the three rounds of QEs.
- We find significantly larger pre-FOMC drift in UST amidst higher unemployment rates.
- To find high-frequency evidence, use the Macro Attention Indices (MAI) on unemployment (Fisher, Martineau, and Sheng 2022) to proxy for the heightened macro uncertainty.


Part I(c): Heightened Unemployment MAI as the Key Driver

	High UMAI				Low UMAI			
	UST10	TP10	EH10		UST10	TP10	EH10	
FOMC[-1]	-1.72	-1.74	0.02		0.19	0.4	-0.22	
	[-3.44]	[-3.45]	[0.07]		[0.44]	[1.26]	[-0.58]	
FOMC[0]	-0.33	0.03	-0.36		-1.21	-0.31	-0.90	
	[-0.54]	[0.05]	[-0.78]		[-1.87]	[-0.59]	[-1.80]	
FOMC[1]	-1.13	-0.92	-0.22		0.16	0.06	0.09	
	[-1.55]	[-1.12]	[-0.53]		[0.24]	[0.11]	[0.21]	

- The pre-FOMC UST is significant only under high Unemployment MAI (observed on FOMC[-3]).
- The Unemployment MAI (UMAI), both the level and change, is predictive of the pre-FOMC UST.
- Decomposing the 10-year yield into TP and EH, the predictability is through term premium.
- VIX, the strongest predictor for pre-FOMC SPX, has no predictability for pre-FOMC UST.

Part II(a): A Common Mechanism for Pre-FOMC Stock and Bond

 A striking long-run similarity between the pre-FOMC drift in stock and bond, although the specific drivers differ – pre-FOMC SPX driven by equity market uncertainty (e.g., VIX), while pre-FOMC UST by macro uncertainty (e.g., UMAI) and the post-2008 QE.

Part II(a): The Risk Premium Channel – A Two-Risk Model

• Under Hu, Pan, Wang, and Zhu (2022), the market impact of the announcement

$$D = \bar{D} + \frac{\sigma \epsilon}{\sigma},$$

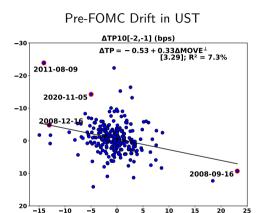
where ϵ is the news shock, to be released at the FOMC announcement (date 0).

- ullet Central to the model is the presence of the impact uncertainty σ
 - ▶ Its variability $V\left(\sigma^2\right) = \lambda^2$ can be dialed up and down via λ .
 - ▶ The same ϵ can have substantially different market impact depending on σ .
 - ▶ Accumulation (date -2): heightened uncertainty in anticipation of FOMC ($\lambda \uparrow$).
 - ▶ Pre-announcement (date -1): Resolution of σ takes place, before the announcement.
- The equilibrium price under a CARA investor with risk aversion α ,

$$P_{-2} = \bar{D} - \alpha E\left(\sigma^2\right) - \boxed{\frac{\frac{1}{2}\alpha^3\lambda^2}{1 - \frac{1}{2}\alpha^2\lambda}} \quad \text{and} \quad P_{-1} = \bar{D} - \alpha \sigma^2 \,.$$

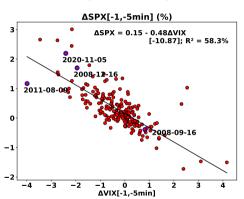
• The pre-announcement drift results from the accumulation of heightened uncertainty $(P_{-2}\downarrow)$ and its subsequent resolution prior to the announcement $(P_{-1}\uparrow)$.

Part II(a): The Risk Premium Channel – Testable Implications


	Accumulation (Date -2)	Pre-Announcement (Date -1)	Announcement (Date 0)	
		σ Resolves	ϵ Resolves	
Impact Uncertainty Bond Equity	$MOVE^\perp\uparrow$ $VIX\uparrow$	MOVE [⊥] ↓ VIX ↓		
Pricing Bond Equity	UST10↓ SPX↓	UST10 ↑ SPX ↑		

Part II(a): Heightened Uncertainty and its Subsequent Resolution

	lmį	oact Uncert	ainty	Pric	ing
	$\Delta {\sf VIX}$	$\Delta {\sf MOVE}$	$\Delta MOVE^\perp$	Δ UST10	$\Delta TP10$
FOMC[-5]	-0.05	0.19	0.28	0.35	0.23
	[-0.43]	[0.68]	[0.88]	[0.98]	[0.75]
FOMC[-4]	-0.18**	0.77**	1.11***	0.28	0.04
	[-2.42]	[2.57]	[3.51]	[0.75]	[0.13]
FOMC[-3]	0.05	0	-0.1	0.05	-0.14
	[0.52]	[0.01]	[-0.38]	[0.14]	[-0.46]
FOMC[-2]	0.25***	0.35	-0.13	0.47	0.22
	[2.73]	[1.34]	[-0.47]	[1.22]	[0.70]
FOMC[-1]	0.06	-0.49*	-0.61**	-0.80**	-0.73**
	[0.50]	[-1.77]	[-2.34]	[-2.35]	[-2.36]
FOMC[0]	-0.48***	-2.56***	-1.62***	-0.79*	-0.21
	[-3.83]	[-8.50]	[-4.86]	[-1.80]	[-0.57]
const	0.01	0.06	0.05	0.01	0.04
	[0.42]	[1.21]	[0.86]	[0.11]	[0.52]
N	7802	7802	7802	7802	7802
R-sqrd (%)	0.39	1.35	0.69	0.19	0.13


MOVE: bond option implied volatility; MOVE[⊥]: orthogonal to VIX.

Part II(a): Stronger the Resolution, Larger the Pre-FOMC Drift

ΔMOVE[⊥][-2, -1]

Pre-FOMC Drift in SPX

• True in both the bond and equity markets: higher degrees of uncertainty resolution are associated with larger pre-FOMC drift.

Part II(b): The Pre-FOMC UST is Predictive of the Pre-FOMC SPX

Dependent: Pre-FOMC Returns in SPX (basis points)									
	Full Sample			High UMAI			Low UMAI		
const	-32.25***	-31.79***	-31.46***	-48.28***	-46.50***	-41.60***	-17.73	-17.93	-17.83
	[-3.10]	[-3.19]	[-2.96]	[-3.36]	[-3.39]	[-2.68]	[-0.93]	[-0.93]	[-0.95]
Δ UST10[-1]	-1.58**			-2.74***			-0.34		
	[-2.26]			[-2.62]			[-0.35]		
$\DeltaTP10[-1]$		-2.15**			-3.26***			-0.29	
		[-2.32]			[-2.98]			[-0.27]	
Δ EH10[-1]			0.48			1.82			-0.24
			[0.34]			[0.91]			[-0.16]
VIX[-3]	2.94***	2.90***	2.96***	3.36***	3.23***	3.27***	2.40**	2.41**	2.40**
	[4.81]	[4.88]	[4.74]	[4.31]	[4.26]	[3.92]	[2.04]	[2.03]	[2.08]
R-sqrd (%)	16.22	17.13	14.57	21.91	23.63	18.56	9.91	9.85	9.85
N	250	250	250	117	117	117	117	117	117

- The equity market uncertainty (VIX) is by far the strongest driver of the pre-FOMC drift in SPX.
- Against this backdrop, the pre-FOMC UST, particularly the TP component, can also predict the pre-FOMC SPX. Under low UMAI, however, the predictability is absent.

Conclusions

- We fill an important gap in the pre-FOMC literature by documenting the presence of a significant pre-FOMC drift in the Treasury market.
- Our pre-FOMC result adds to the important observation by Hillenbrand (2025) on the secular decline in long-term interest rates and the three-day FOMC window.
 - ► FOMC[-1]: dominated by TP, indicating a risk-premium channel.
 - ▶ FOMC[0]: dominated by EH, consistent with "long-run Fed guidance."
 - ▶ FOMC[1]: an intriguing connection between FOMC[-1].
- We offer a common mechanism to explain the pre-FOMC drift in bond and equity.
 - ▶ The accumulation of heightened uncertainty and its subsequent resolution.
 - ▶ A striking similarity between the two pre-FOMC drift over the long run.
 - ▶ The pre-FOMC drift in UST is predictive of the pre-FOMC SPX.