Class 3: Calculating Standard Errors Empirical Asset Pricing, Fall 2020

Jun Pan

Shanghai Advanced Institute of Finance Shanghai Jiao Tong University

November 24, 2020

Estimating the Mean of a Time-Series

• Moment condition $E[h(R_t, \mu_0)] = 0$ with moment h:

$$h\left(R_t,\mu
ight)=R_t-\mu\ ,\ {
m for\ any}\ \mu\in R\,.$$

• Population mean of the moment, for any $\mu \in R$:

$$H_0(\mu) = E[h(R_t, \mu)] = E(R_t - \mu)$$

• Sample counterpart:

$$H_T(\mu) = \frac{1}{T} \sum_{t=0}^T h(R_t, \mu) = \frac{1}{T} \sum_{t=0}^T (R_t - \mu)$$

Calculating Standard Errors from First Principles

• Mean-value theorem, for some b^* between b_0 and b_T ,

$$H_T(b_T) - H_T(b_0) = \frac{\partial H_T}{\partial b} \Big|_{b=b^*} (b_T - b_0)$$
$$(r \times 1) \qquad (r \times q) \qquad (q \times 1)$$

where there are r moments and q parameters.

• Multiply both sides by

$$\left(\frac{\partial H_T(b)}{\partial b}\Big|_{b_T}\right)^T W_T$$

• By definition, b_T minimizes $H_T(b)^T W_T H_T(b)$, so

$$\left(\frac{\partial H_T(b)}{\partial b}\Big|_{b_T}\right)^T W_T H_T(b_T) = 0$$

Calculating Standard Errors from First Principles

• We are left with

$$-\left(\frac{\partial H_T(b)}{\partial b}\Big|_{b_T}\right)^T W_T H_T(b_0) = \left(\frac{\partial H_T(b)}{\partial b}\Big|_{b_T}\right)^T W_T \frac{\partial H_T}{\partial b}\Big|_{b=b^*} (b_T - b_0)$$

• Assuming the q imes q matrix in front of $b_T - b_0$ is invertible, we have

$$b_T - b_0 = -\left[\left(\frac{\partial H_T(b)}{\partial b}\Big|_{b_T}\right)^T W_T \frac{\partial H_T}{\partial b}\Big|_{b=b^*}\right]^{-1} \left(\frac{\partial H_T(b)}{\partial b}\Big|_{b_T}\right)^T W_T H_T(b_0)$$

• Asymptotically, when T goes to ∞ , we have b_T converges in probability to b_0 and $\sqrt{T} (b_T - b_0)$ converges in distribution to normal asymptotic variance-covariance matrix

$$\Omega = (d_0^T W_0 d_0)^{-1} d_0^T W_0 \Sigma_0 W_0 d_0 (d_0^T W_0 d_0)^{-1}$$

Calculating Standard Errors from First Principles

• Σ_0 is the asymptotic variance-covariance matrix, dimension $r \times r$, of the sample mean of the moments $H_T(b_0)$:

$$\Sigma_0 = \lim_{T \to \infty} TE\left(H_T(b_0)H_T(b_0)^T\right)$$

• d_0 is the derivative matrix of the sample mean:

$$d_0 = E\left(\frac{\partial H_T(b)}{\partial b}\bigg|_{b_0}\right)$$

- W_0 is the weighting matrix
 - In GMM, $W_0 = \Sigma_0^{-1}$. In this case, $\Omega = \left[D^T \Sigma_0^{-1} D\right]^{-1}$
 - Setting $W_0 = I$, we pick r = q moments to estimate q parameters and D has to be invertible. In this case $\Omega = D^{-1}\Sigma_0(D^T)^{-1} = \left[D^T\Sigma_0^{-1}D\right]^{-1}$

Estimating Other Moments

• Standard deviation $\sigma = \sqrt{m_2}$:

$$h(R_t, m_1, m_2) = \binom{R_t - m_1}{(R_t - m_1)^2 - m_2}$$

$$\frac{E(R_t - m_1)^3}{m_2^{3/2}}$$

• Kurtosis:

$$\frac{E(R_t - m_1)^4}{m_2^2}$$

• Correlation:

$$\frac{E\left[(X_t - m_1^X)(Y_t - m_1^Y)\right]}{\sqrt{m_2^X m_2^Y}}$$

Empirical Asset Pricing, Fall 2020

Class 3: Calculating Standard Errors

Jun Pan 6 / 7

Regression: $Y = X^T \beta + u$

• Sample mean of the moments:

$$H_T(\beta) = \frac{1}{T} \sum_{t} X \left(Y - X^T \beta \right)$$

• Derivative matrix:

$$\frac{\partial H_T}{\partial \beta} = -\frac{1}{T} \sum_t X X^T; d_0 = -E(X X^T)$$

• Asymptotic variance-covariance matrix of H_T :

$$\Sigma_0 = \lim_{T \to \infty} TE\left(H_T H_T^T\right) = \lim_{T \to \infty} \frac{1}{T}E\left(\sum X(Y - X^T\beta)\left(\sum X(Y - X^T\beta)\right)^T\right)$$

• Standard errors: OLS, White, Newey-West, clustered by time and firm (for panel regressions).