Fixed Income, Credit Risk

15.433 Financial Markets December 5, 2017

Outline

- Corporate Bonds
 - Default Intensity
 - Loss Given Default
- Modeling Default:
 - Structural Approach
 - Reduced-Form Approach
- Credit Default Swaps

Fixed Income

- Key Risk Factors
 - Yield curve uncertainties: Level, Slope, and interest rate Volatility.
 - Counterparty risk in OTC derivatives.
 - Credit risk in corporate bonds, CDS, bank loans, mortgages, muni's, commercial paper, CDO/CLO.
 - Liquidity risk, often coupled with credit events.
 - Optionalities: callable and puttable bonds, prepayment in MBS, etc.
- Measures of Risk:
 - Term Spreads: long-term yield minus short-term yield.
 - Volatility: swaption implied vol.
 - Credit/Liquidity Spreads: LIBOR-Treasury, LIBOR-OIS,
 Swap-Treasury, Old Bond/New Bond, Corp Spread, CDS, etc.

Outstanding US Bond Market Debt in \$ Billions

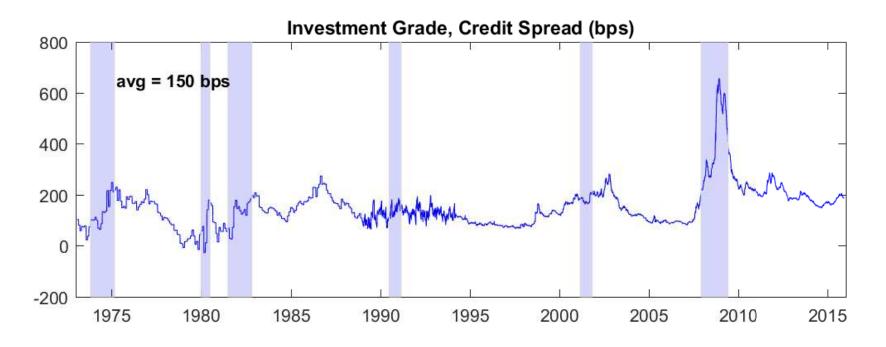
	Muni	Treasury	Mortgage Related	Corp Debt	Agency Securities	Money Markets	Asset Backed	Total
1980	399.4	623.2	111.4	458.6	164.3	480.7		2,237.7
1985	859.5	1,437.7	399.9	776.6	261.0	950.9	1.2	4,686.7
1990	1,178.6	2,195.8	1,340.1	1,350.3	421.5	1,328.9	66.2	7,881.5
1995	1,268.2	3,307.2	2,432.1	2,087.5	924.0	1,367.6	214.9	11,601.4
2000	1,480.7	2,951.9	4,119.3	3,400.5	1,853.7	2,815.8	699.5	17,321.5
2005	3,019.3	4,165.9	7,206.4	4,604.0	2,616.0	3,536.6	1,275.0	26,423.2
2006	3,189.3	4,322.9	8,376.0	4,842.5	2,634.0	4,140.0	1,642.7	29,147.3
2007	3,424.8	4,516.7	9,372.6	5,254.3	2,906.2	4,310.8	1,938.8	31,724.2
2008	3,517.2	5,783.6	9,457.6	5,417.5	3,210.6	3,939.3	1,799.3	33,125.2
2009	3,672.5	7,260.6	9,341.6	5,934.5	2,727.5	3,243.9	1,682.1	33,862.7
2010	3,772.1	8,853.0	9,221.4	6,543.4	2,538.8	2,980.8	1,476.3	35,385.9
2011	3,719.4	9,928.4	9,043.8	6,618.1	2,326.9	2,719.3	1,330.0	35,685.9
2012	3,714.4	11,046.1	8,814.9	7,049.6	2,095.8	2,612.3	1,253.6	36,586.7
2013	3,671.2	11,854.4	8,720.1	7,458.6	2,056.9	2,713.7	1,252.5	37,727.3
2014	3,652.4	12,504.8	8,729.4	7,846.2	2,028.7	2,903.3	1,336.5	39,001.3
2015	3,777.0	13,191.6	8,759.0	8,172.3	1,995.4	2,806.9	1,358.8	40,061.0
2016Q2	3,826.1	13,417.8	8,829.8	8,433.4	2,005.1	2,849.2	1,359.7	40,721.1

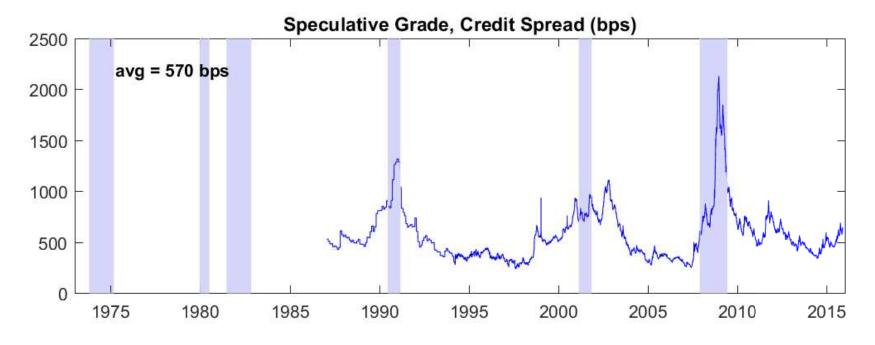
Issuance in the U.S. Bond Markets USD Billions

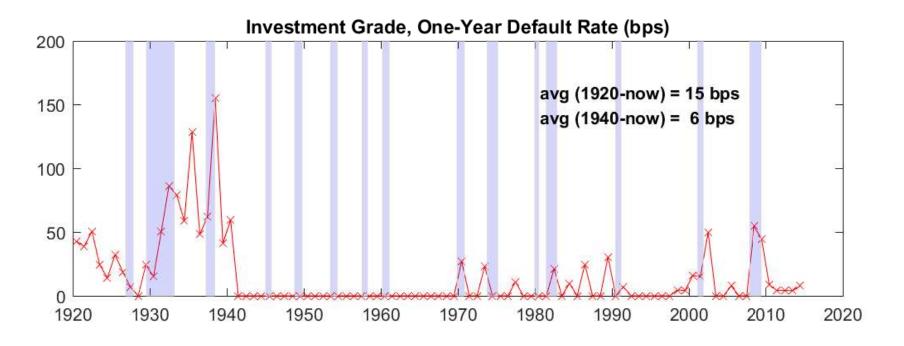
Invested in America

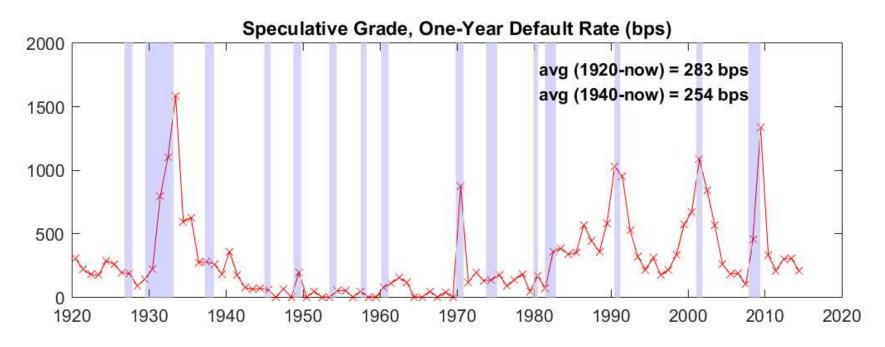
				Mortgage-		Federal Agency		
Year	M	Municipal	Treasury	Related	Corporate Debt	Securities*	Asset-Backed	Total
1996		185.2	612.4	553.4	343.7	277.9	121.9	2,094.5
1997		220.7	540.0	719.3	466.0	323.1	142.2	2,411.3
1998		286.8	438.4	1,259.3	610.7	596.4	186.1	3,377.7
1999		224.4	364.6	1,125.6	629.2	548.0	198.6	3,090.3
2000		198.3	312.4	778.8	574.1	446.6	246.8	2,557.0
2001		286.2	380.7	1,818.1	771.9	941.0	266.8	4,464.7
2002		355.8	571.6	2,519.4	636.0	1,041.5	273.9	5,398.2
2003		380.2	745.2	3,505.0	772.9	1,219.5	287.9	6,910.7
2004		358.1	853.3	2,411.5	774.6	877.8	349.2	5,624.5
2005		407.2	746.2	2,782.1	750.0	635.0	482.5	5,803.0
2006		386.0	788.5	2,730.9	1,057.5	691.8	678.1	6,332.8
2007		429.2	752.3	2,494.3	1,136.2	831.2	634.0	6,277.2
2008		389.3	1,037.3	1,436.8	711.3	984.9	289.3	4,848.9
2009		409.6	2,074.9	2,106.4	940.1	1,086.7	154.0	6,771.7
2010		433.1	2,319.8	2,010.7	1,055.1	1,203.7	108.4	7,130.9
2011		294.7	2,103.3	1,701.4	1,023.4	838.4	126.5	6,087.5
2012		378.9	2,304.5	2,157.7	1,370.2	720.7	233.2	7,165.3
2013		334.9	2,140.0	2,092.0	1,379.9	419.5	262.4	6,628.8
2014		337.5	2,215.4	1,365.3	1,479.3	377.4	309.6	6,084.5
2015		403.1	2,122.5	1,710.0	1,492.5	513.5	255.2	6,496.7

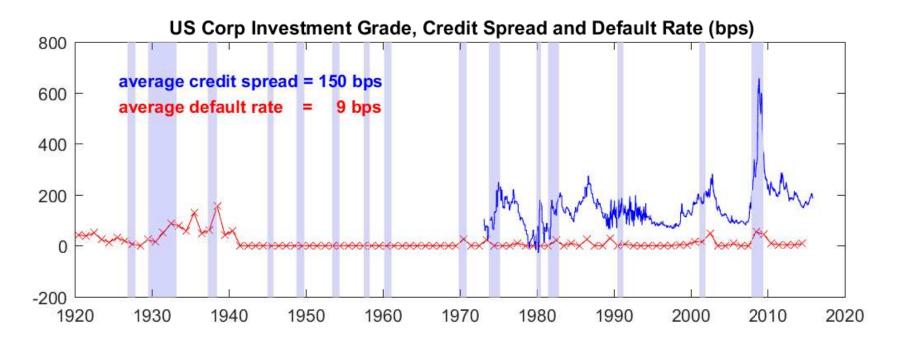
U.S. Bond Markets Average Daily Trading Volume USD Billions

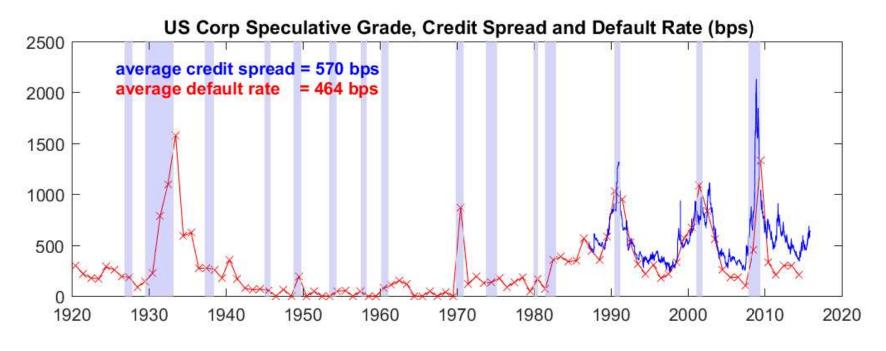



Invested in America


			Non-Agency		Corporate	Federal Agency		
	Municipal	Treasury	Agency MBS	MBS	ABS	Debt ¹	Securities	Total
1996	1.1	203.7	38.1	-	-	-	31.1	274.0
1997	1.1	212.1	47.1	-	-	-	40.2	300.5
1998	3.3	226.6	70.9	-	-	-	47.6	348.5
1999	8.3	186.5	67.1	-	-	-	54.5	316.5
2000	8.8	206.5	69.5	-	-	-	72.8	357.6
2001	8.8	297.9	112.0	-	-	-	90.2	508.9
2002	10.7	366.4	154.5	-	-	17.8	81.8	631.2
2003	12.6	433.5	206.0	-	-	18.0	81.7	751.8
2004	14.8	499.0	207.4	-	-	17.3	78.8	817.3
2005	16.9	554.5	251.8	-	-	16.6	78.8	918.6
2006	23.1	524.7	254.6	-	-	16.9	74.4	893.7
2007	25.1	570.2	320.1	-	-	16.4	83.0	1,014.9
2008	19.4	553.1	344.9	-	-	14.3	104.5	1,036.1
2009	12.5	407.9	299.9	-	-	19.9	77.7	817.8
2010	13.3	528.2	320.6	-	-	20.5	11.2	893.7
2011	11.3	567.8	243.3	4.4	1.5	20.6	9.6	853.5
2012	11.3	518.9	280.4	4.5	1.5	22.6	9.7	849.0
2013	11.2	545.4	222.8	4.1	1.3	24.7	6.5	816.0
2014	9.9	504.2	178.0	3.7	1.5	26.7	5.3	729.2
2015	8.6	490.1	194.4	3.1	1.4	26.6	4.5	728.7


Average daily dollar trading volume in September 2015:


Equity \$321bn, Treasury \$499bn, and Corporate Bonds \$25bn.



Defaults in 2008, by Industry Distribution

Broad Industry	Percent of Issuer Counts	Percent of Dollar Volume
Banking	8.9%	25.4%
Capital industries	29.7%	5.2%
Consumer Industries	22.8%	5.1%
Energy & Environment	6.9%	2.0%
FIRE	9.9%	53.8%
Media & Publishing	8.9%	6.7%
Retail & Distribution	4.0%	0.7%
Technology	5.0%	0.8%
Transportation	4.0%	0.4%
Utilities	0.0%	0.0%
2008 Total	101	\$281.2 bil

- Lehman was the largest default in history: \$120.2B.
- 84 of the 101 defaulters were in North American with 74 in the US.
- North American defaulted debt volumes: \$226.2B.

Defaults in 2008, by Financial Institutions

Senior Unsecured Bond Recovery Rates for Financial Institution Defaults in 2008¹

Company	Domain	Default Volume (\$Mil)	Sr. Unsecured Bond Recovery
Lehman Brothers Holdings, Inc.	United States	120,164	9.3%
Kaupthing Bank hf	Iceland	20,063	4.0%
Glitnir banki hf	Iceland	18,773	3.0%
GMAC LLC	United States	17,190	69.9%
Washington Mutual Bank	United States	13,600	26.5%
Residential Capital, LLC	United States	12,315	51.7%
Landsbanki Islands hf	Iceland	12,161	3.0%
Washington Mutual, Inc.	United States	5,746	57.0%
GMAC of Canada Ltd	Canada	265	70.7%
Downey Financial Corp.	United States	200	0.5%
Fremont General Corporation	United States	166	46.0%
Luminent Mortgage Capital, Inc.	United States	131	27.3%
Triad Financial Corporation	United States	89	76.5%
Franklin Bank Corp.	United States	80	0.0%
GMAC International Finance B.V.	Netherlands	51	85.5%
Average	35.4%	Median	27.3%

Based on 30-day post-default market prices.

Recovery Rates based on debt trading prices 30 days after the default date

Average corporate debt recovery rates measured by post-default trading prices

	Iss	uer-weighted	Volume-weighted			
Lien Position	2014	2013	1982-2014	2014	2013	1982-2014
1st Lien Bank Loan	78.4%	75.1%	66.6%	80.6%	67.7%	62.5%
2nd Lien Bank Loan*	10.5%	78.7%	31.8%	10.5%	69.2%	28.5%
Sr. Unsecured Bank Loan	n.a.	n.a.	47.1%	n.a.	n.a.	40.2%
Sr. Secured Bond	59.5%	59.8%	52.8%	76.5%	59.5%	52.4%
Sr. Unsecured Bond	43.3%	43.8%	37.4%	34.3%	29.2%	33.6%
Sr. Subordinated Bond*	46.9%	20.7%	31.1%	28.3%	26.6%	26.0%
Subordinated Bond**	38.8%	26.4%	31.4%	38.0%	33.7%	26.3%
Jr. Subordinated Bond	n.a.	n.a.	24.7%	n.a.	n.a.	17.1%

^{*} The average recovery rates for 2014's and 2013's second lien bank loans and senior subordinated bonds were each based on fewer than five defaults.

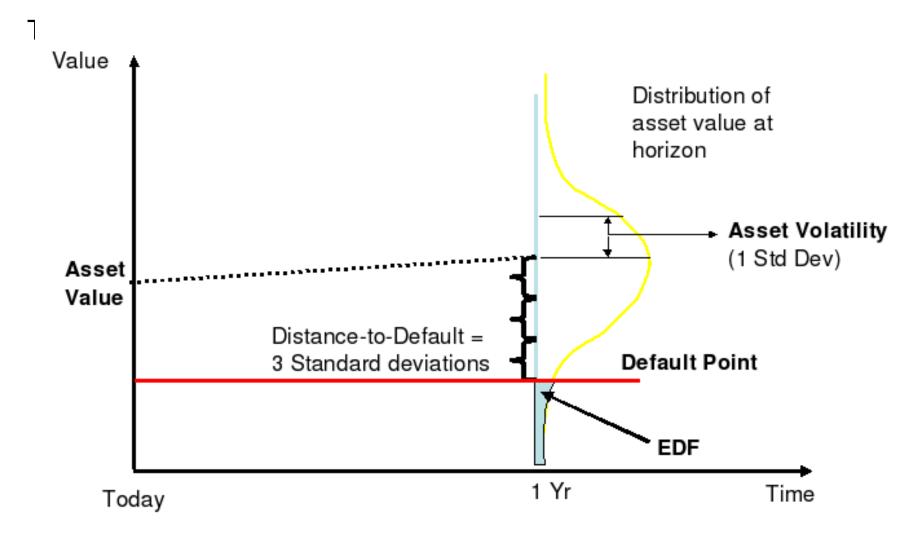
^{**} The average recovery rates for 2014's subordinated bonds were based on fewer than five defaults.

Recovery Rates based on ultimate recoveries

EXHIBIT 8

Average corporate debt recovery rates measured by ultimate recoveries, 1987-2014

_	Eme	ergence Year		Default Year		
Lien Position	2014	2013	1987-2014	2014	2013	1987-2014
Loans*	81.0%	76.7%	80.2%	68.4%	76.6%	80.2%
Senior Secured Bonds**	57.1%	84.2%	63.0%	59.4%	56.9%	63.0%
Senior Unsecured Bonds***	44.6%	61.3%	48.8%	0.0%	34.4%	48.8%
Subordinated Bonds	0.0%	21.0%	28.2%	0.0%	21.0%	28.2%


Various Sources to Estimate Default Probability

- We will now focus on modeling and estimating the default probability, while keeping the recovery rate, which is 1 minus the loss rate, at a constant level.
- Information about default probability can be collected from:
 - Rating: credit ratings (S&P, Moody's, Fitch) and the historical default rates by rating category.
 - Equity Market: firm fundamentals, financial statements and equity-market information (Moody's KMV).
 - Credit Market: the market prices of securities with exposure to default risk: corporate bond yield spreads or credit-default swap (CDS) spreads.

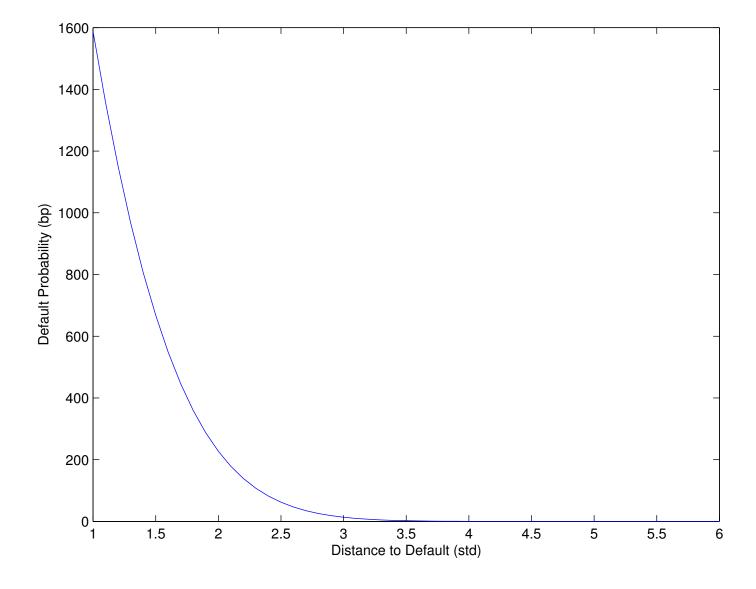
Models of Default

- Structural approach: start with the firm's fundamentals, such as firm value or earnings. Merton (1974), Black and Cox (1976), Longstaff and Schwartz (1995), and Leland (1994).
- Reduced-form approach: treat default as the outcome of a jump process.
 Duffie and Singleton (1999).
- For the purpose of pricing a defaultable bond, the main output of a defaultable model is the term structure of probability of default.
- When defaultable securities are pooled together, then the valuation of the pooled security involves crucially on the model-implied probability of correlated default.

Model Default using Structural Approach

Distance to Default:

$$DD = \frac{\ln(V/K) + (\mu - \sigma_A^2/2) t}{\sigma_A \sqrt{t}}$$

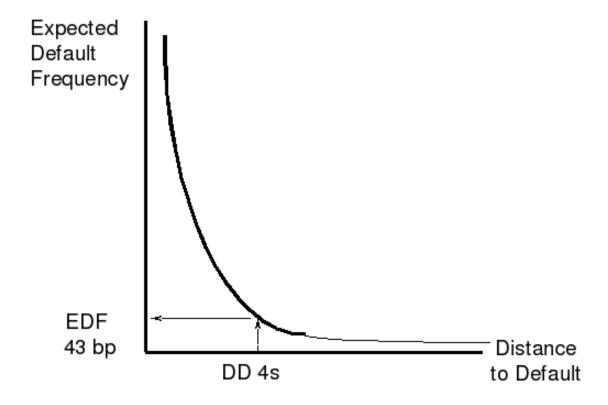

- ullet The market value of assets V
- Asset volatility σ_A
- ullet The book value of liabilities K
- ullet Debt-to-Asset ratio: K/V
- ullet The expected growth rate of asset value μ
- DD = distance to default = number of std the firm is away from default
- t =the time horizon

Calculating Distance to Default

debt ratio	asset growth	asset vol	horizon	distance to default
K/V	μ	σ_A	t	DD
15%	10%	40%	1yr	4.79
15%	10%	40%	10yr	1.66
50%	10%	40%	1yr	1.78
15%	10%	20%	1yr	9.89
15%	10%	20%	10yr	4.26
15%	20%	40%	1yr	5.04

From Distance to Default to Default Probability

Assuming normal distribution: Default Probability =N(-DD)



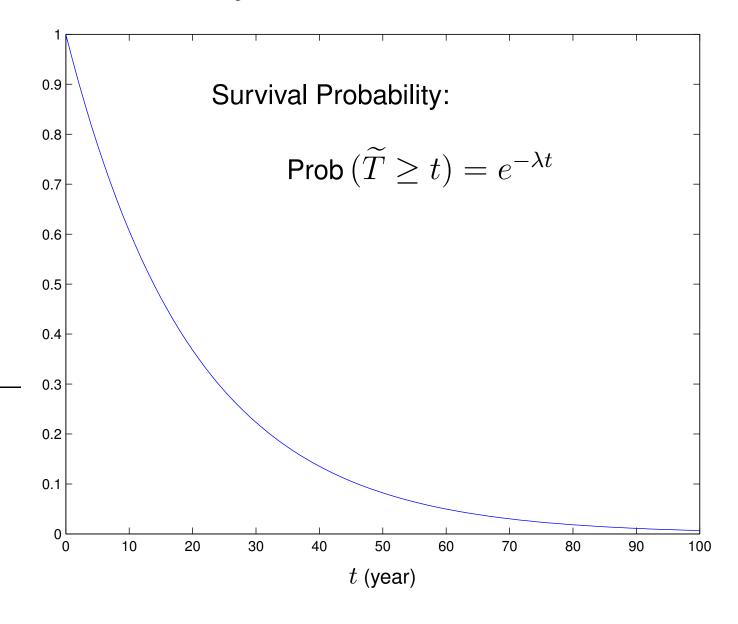
From Distance to Default to Moody KMV's EDF

(Expected Default Frequency)

- The probability from normal distribution is too low and credit risk is not normal.
- Moody's KMV uses actual default rates for companies in similar risk ranges to determine a mapping from DD to EDF.
- This procedure requires a large database of actual defaults.

Moody's EDF

Model Default using Reduced-Form Approach


- Let \widetilde{T} be the random default time.
- The probability of survival up to time t:

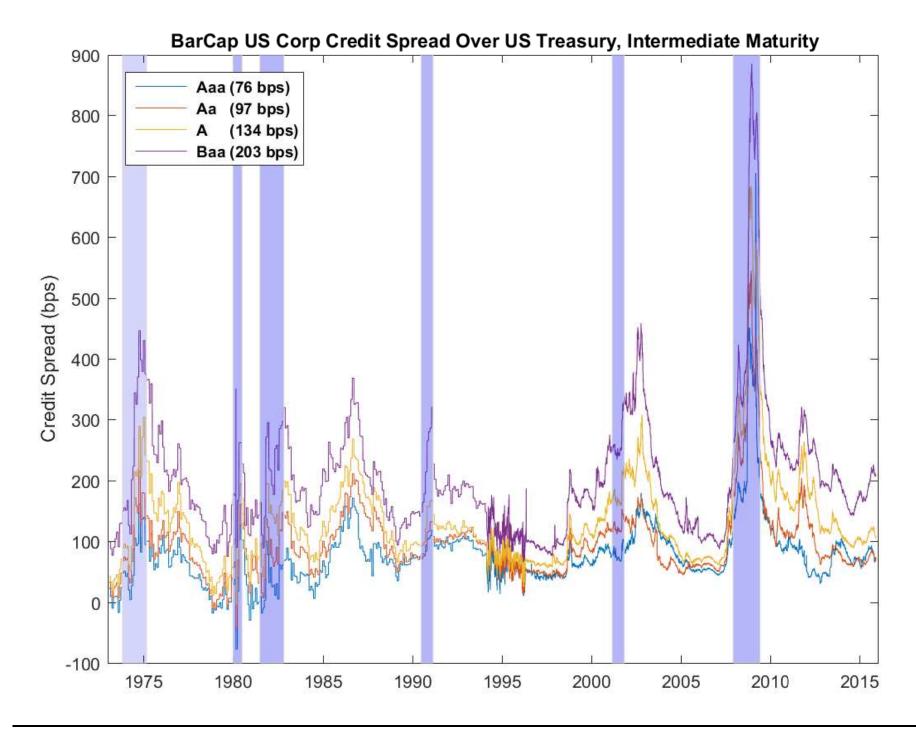
Prob
$$\left(\widetilde{T} \geq t\right)$$

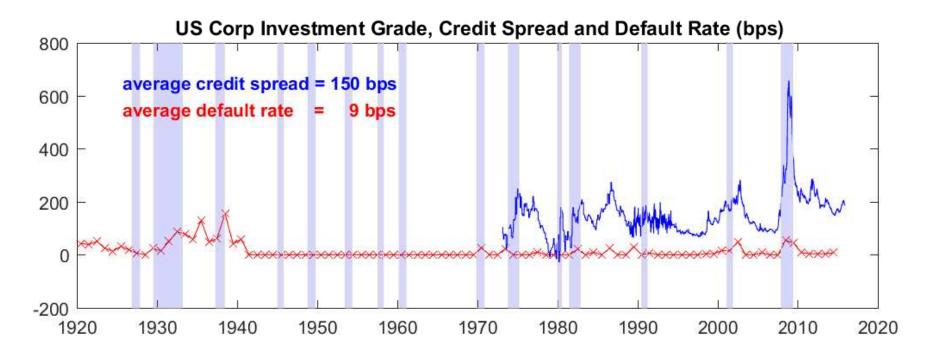
• The probability of default before time *t*:

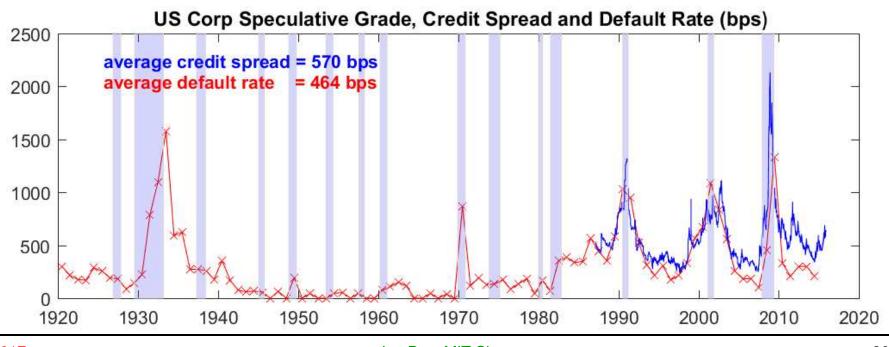
$$\operatorname{Prob} \left(\widetilde{\overline{T}} < t \right) = 1 - \operatorname{Prob} \left(\widetilde{\overline{T}} \geq t \right)$$

Constant Default Intensity λ

Pricing a Zero-Coupon Bond

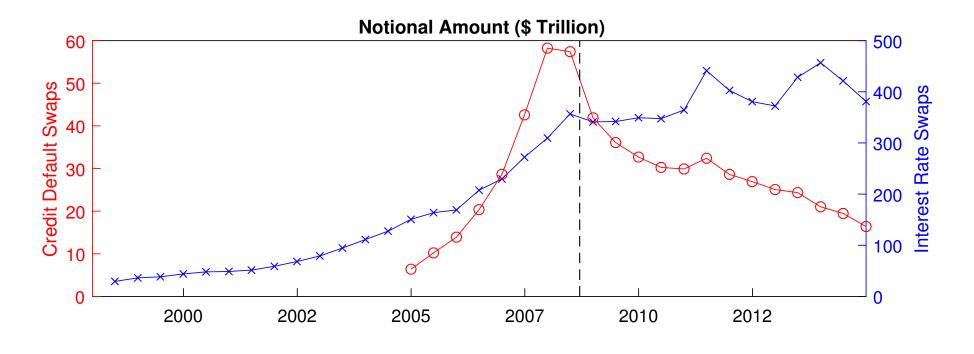

- ullet Assume the constant default intensity λ of a firm is 100 bps.
- The one-year default probability: $1 e^{-\lambda} \approx \lambda$.
- Assume zero recovery (100% loss given default):
 - Consider a one-year zero-coupon bond with \$1 face value:

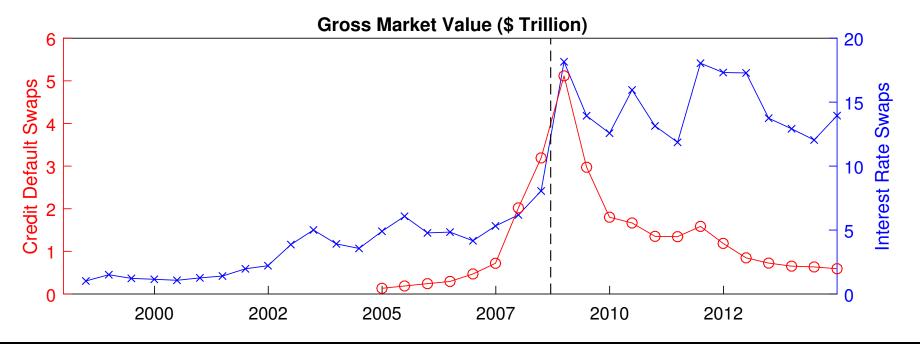

$$P=e^{-r}\operatorname{Prob}\left(\widetilde{T}>1\right)=e^{-r}\times e^{-\lambda}=e^{-(r+\lambda)}$$


- The yield to maturity of the defaultable bond: $r + \lambda$
- The credit spread of the defaultable bond: λ
- Assume constant loss given default (L):

$$\begin{split} P &= e^{-r}\operatorname{Prob}\left(\widetilde{T} > 1\right) + e^{-r}\operatorname{Prob}\left(\widetilde{T} \leq 1\right) \times (1-L) \\ &= e^{-r} \times e^{-\lambda} + e^{-r} \times (1-e^{-\lambda}) \times (1-L) \end{split}$$

For small λ , the credit spread is approximately: $\lambda \times L$.





Credit Default Swaps

- The US corporate bond market is among the most illiquid markets. For a market of \$8T in 2015, the average daily trading volume is only \$25B. By comparison, the average daily volume is \$499B for US Treasury and \$321B for US Equity.
- In buying a corporate bond, investors take on both duration and credit exposures. To have a pure positive exposure to credit risk, investors have to hedge out the duration risk. To have a pure negative exposure to credit risk, investors have to locate, borrow, and then sell the bonds and buy back the duration exposure.
- The emergence of credit derivatives was in part a response to the limitations of corporate bonds as a vehicle for credit risk.

Valuation: One-Year Credit Default Swap

- ullet Consider a one-year CDS and assume constant interest rate r.
 - The present value of the annuity:

$$\mathrm{CDS} \times P\left(\tilde{T} > 1\right) \times e^{-r}$$

– The present value of the insurance:

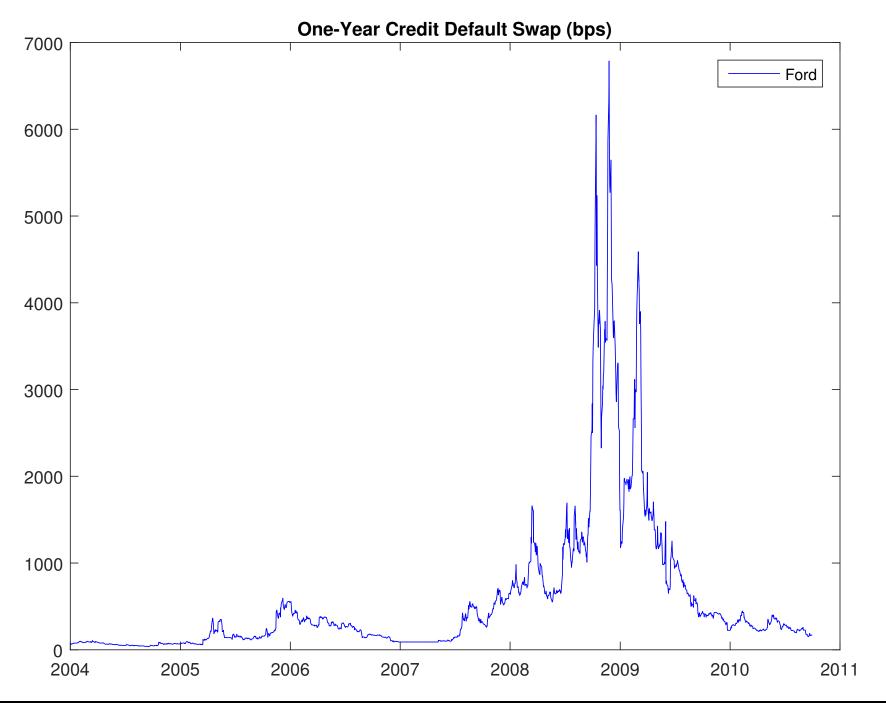
$$\operatorname{Loss} \times P\left(\tilde{T} \leq 1\right) \times e^{-r}$$

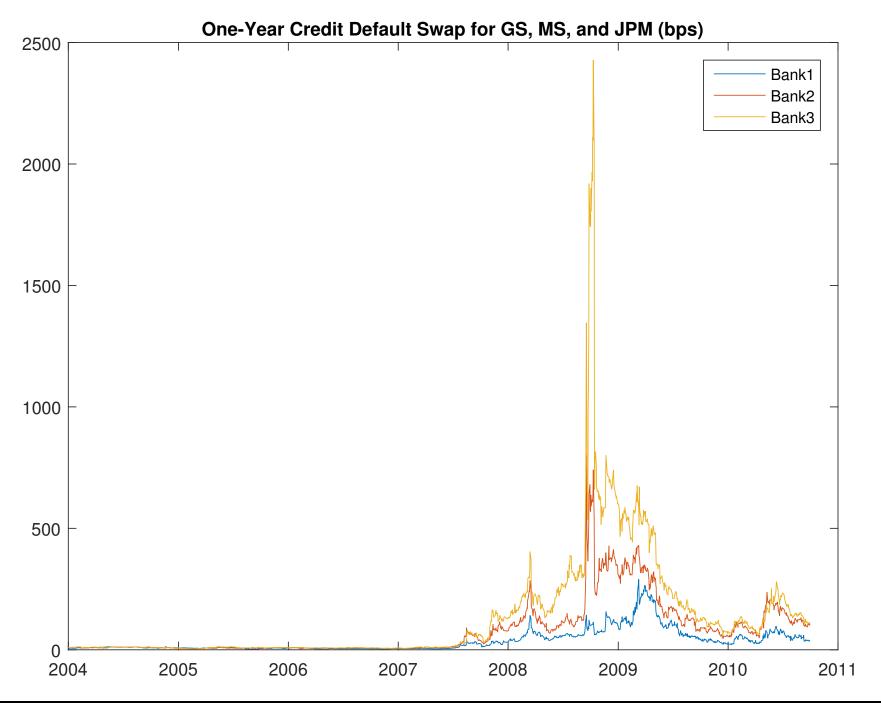
Set CDS so that the two legs have the same present value:

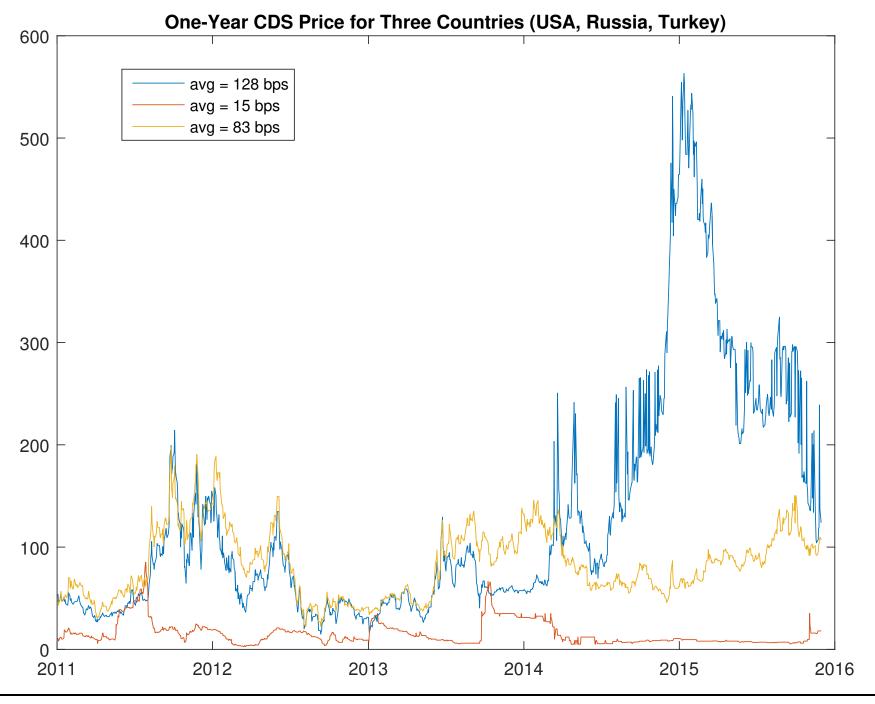
$$\mathrm{CDS} = \frac{P\left(\tilde{T} \leq 1\right) \times \mathrm{Loss}}{1 - P\left(\tilde{T} \leq 1\right)}$$

ullet For small $P(\tilde{T} \leq 1)$, CDS pprox "1yr Default Probability" imes "Loss"

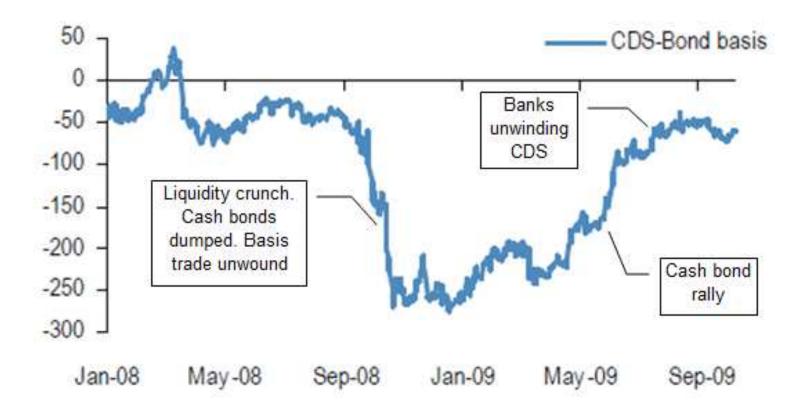
Applying Constant Default Intensity Model


• Let's use the constant default intensity model:


one-year default probability
$$= 1 - e^{-\lambda}$$


The one-year CDS price is

$$\mathrm{CDS} = \frac{\left(1 - e^{-\lambda}\right) \times \mathrm{Loss}}{e^{-\lambda}} \approx \lambda \times \mathrm{Loss}\,,$$


where the approximation works well for small λ .

CDS-Bond Basis

Source: J.P. Morgan.