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Classes 7 & 8

Time-Varying Expected Returns and Volatility

The following was written for the master-level class I taught at MIT Sloan a few years
ago. If time permits, I’ll revise the content to make it more suitable for a PhD level class.

1 Return Predictability and Market Efficiency
We will start with the efficient market hypothesis, using it as a framework to help us un-
derstand what it means to be able to predict the market. People often believe that mar-
ket efficiency means that returns are unpredictable. This is not true. In an economy with
time-varying business condition or time-varying risk appetite, the expected returns are time-
varying and, most likely, persistent. As a result, you will see return predictability. The more
relevant question is: How strong is the predictability? We will look at some of the empirical
evidences.

Follow the Information: The financial markets are an information central, where people
bring their information to trade. If it is a correct and useful piece of information, which has
not yet been incorporated into the price, then there is room for profit. But as soon as the
market price adjusts to the news, the information loses its usefulness and there is no longer
any profit to be made with this piece of information.

So when it comes to predicting the market, one should follow the flow of information. A
trader who wants to make a profit from predicting the market should always ask himself:
Am I good at collecting information? If so, then I have all the incentive to do so because I
will be rewarded for bringing this information to the financial markets. The next question
is: What kind of information am I good at collecting, macro-level for the entire economy,
or micro-level for individual stocks? Depending on your talent, the nature of your trading
strategy will be very different. Global macro funds place directional bets on the overall
market: interest rate, foreign exchange, and maybe the stock market. Long/short equity
funds or fixed-income arbitrage funds avoid taking any directional bet. Instead, they focus
on the relative mis-pricing between groups of stocks or bonds. At the super high-frequency
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domain, where the life span of information is on the order of milliseconds, market making
funds and statistical arbitrage funds populate this space to facilitate trades and provide
liquidity.

All of these market players are motivated by a common goal: making a profit. And they
are able to do so by bringing information to the markets. As a result of these efforts, new
and relevant information gets incorporated into the prices. And the markets become more
efficient.

The Efficient Market Hypothesis: It’s impossible to talk about market predictability
without bringing up the efficient market hypothesis, or the question about market efficiency.
So let me spend some time clarifying some of the confusions.

First of all, in my personal opinion, the efficient market hypothesis is simply a statement
that defines what it means to have an efficient market: when market prices incorporate
information. It is like saying, being happy means to have peace of mind.

Second, without a proper asset pricing model, there is no way to test the efficient market
hypothesis. With a proper model, then we are simply testing the model (e.g., the CAPM)
which usually assumes market efficiency. So there is really no point in sweating over it. To be
more specific, the efficient market hypothesis is not a stand alone test on market efficiency.
It is always a joint test. Market efficiency can only be tested in the context of an asset
pricing model that specifies equilibrium expected returns. For example, market efficiency
implies zero predictability only if the expected returns that investors require to hold stocks
are constant through time (or at least serially uncorrelated). Otherwise, if expected stock
returns are time-varying and persistent, then there will be predictability in stock returns
and it does not imply at all market inefficiency.

Third, Finance in general and efficient market hypothesis in particular is really not a system
of beliefs. What we can offer in Finance are tools. Tools for clear thinking. Don’t believe,
don’t don’t believe. Use the tools, apply them to the data and to your own experiences,
make an honest and sincere effort to figure things out for yourself.

Orange Juice: Since we are on the topic of market efficiency, let me tell one story that
impressed me the most over the years. It is about orange juice, written in a 1984 paper by
Prof. Roll from UCLA. It is the kind of paper I’ve always wanted to write: simplicity at its
best; maximum power with minimum fluff.

Cold weather is bad for orange production. Orange trees cannot withstand freezing tempera-
tures that last for more than a few hours. The central Florida region around Orlando, which
accounts for more than 98 percent of U.S. production of frozen concentrated orange juice, oc-
casionally has freezing weather. During the 6 and 1/4 year period studied by Prof. Roll, there
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were four periods when the temperatures were below 30◦F, each accompanied by significant
price increase in orange juice futures prices.

Overall, the most important determinant in the pricing of orange juice futures is weather in
central Florida. Quoting Prof. Roll, “So if the OJ futures market is an efficient information
processor, it should incorporate all publicly available long-term and short-term weather
forecasts. Any private forecasts should be incorporated to the extent that traders who are
aware of those forecasts are also in command of significant resources. The futures price
should, therefore, incorporate the predictable part of weather in advance.”

With this idea in mind, Prof. Roll uses the OJ futures prices to predict the weather. Not sur-
prisingly, you will find a relationship between the two. The ingenious design of Prof. Roll’s
regression is to find out if the OJ futures prices can predict weather more accurately than
the National Weather Service. On the left hand side of his regression is the temperature
forecast error, which the percentage difference between the actual temperature and the fore-
cast temperature provided by the National Weather Service. On the right hand side of his
regression is the returns on orange juice futures.

What did he find? Orange juice futures prices are better at predicting the weather than the
National Weather Service. This predictability is especially strong for the P.M. tempature
forecast because of the sensitivity of orange trees to freezing temperatures.

The Value of Millisecond: Let me tell you another story that fascinated me. It border-
lines on craziness, but is a good story. This the first paragraph of Flash Boys, a recent book
by Michael Lewis.

“By the summer of 2009 the line had a life of its own, and two thousand men were digging
and boring the strange home it needed to survive. Two hundred and five crews of eight men
each, plus assorted advisors and inspectors, were now rising early to figure out how to blast a
hole through some innocent mountain, or tunnel under some riverbed, or dig a trench beside
a country road that lacked a roadside – all without ever answering the obvious question:
Why? The line was just a one-and-a-half-inch-wide hard black plastic tube designed to
shelter four hundred hair-thin strands of glass, but it already had the feeling of a living
creature, a subterranean reptile, with its peculiar needs and wants. It needed its burrow to
be straight, maybe the most insistently straight path ever dug into the earth. It needed to
connect a data center on the South Side of Chicago to a stock exchange in northern New
Jersey. Above all, apparently, it needed to be a secret.”

All of these effort just so the speed of information transmission can be improved in the order
of ... millisecond. Let me quote Lewis again, since he is a much better writer.
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“One way to price access to the line, Tabb thought, was to figure out how much money might
be made from it, from the so-called spread trade between New York and Chicago – the simple
arbitrage between cash and futures. Tabb estimated that if a single Wall Street bank were
to exploit the countless minuscule discrepancies in price between Thing A in Chicago and
Thing A in New York, they’d make profits of $20 billion a year. He further estimated that
there were as many as four hundred firms then vying to capture the $20 billion.”

Market Efficiency not a Marble Statue: In telling the previous two stories, I would like
to impress upon you the process through which markets become efficient. Market efficiency is
not really a doctrine for you to believe or disbelieve. It is a process, a process of arbitrageurs
participating in the markets with the objective of making a profit. Sometimes, this process
works; sometimes it fails. It is an organic process, not a marble statue.

After the 2008 financial crisis, many people were hard on the efficiency market hypothesis.
Some people believed that the financial crisis was the result of a misguided faith in market
efficiency that encouraged market participants to accept security prices as the best estimate
of value rather than conduct their own investigation. Some wrote that among the causes of
the recent financial crisis was an unjustified faith in rational expectations, market efficiencies,
and the techniques of modern finance.

Seriously, I really don’t know how these people got their ideas. Rational expectation builds
on the understanding that all players in the market are motivated to optimize their risk and
return tradeoff; market efficiency does not happen in the vacuum; it happens only when
investors bring their information to the market with the objective of making a profit; and
techniques of modern finance do help reduce trading cost and improve risk sharing in the
society.

As to 2008? The flow of information broke down at some point. Large banks were sitting
on supposedly super safe tranches of CDO and CDO2 without realizing or the willingness to
realize the real risk. The rest of the market had a very limited access to this kind of balance-
sheet (or off balance-sheet) level information and the market prices failed to incorporate this
information. But did the banks take these positions out of their belief of market efficiency?
I really doubt it.

Market Inefficiency and Limits to Arbitrage: Since we touched upon the topic of mar-
ket efficiency, I think it would be fair to mention the Behavior Finance literature on market
inefficiency. It was an area of Finance that grew in popularity after the tech boom of 1990s. If
you are interested in this topic, you can start with Prof. Shleifer’s book, “Inefficient Markets:
An Introduction to Behavioral Finance.”
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The efficient market hypothesis assumes that the market incorporates the new information
right away. In practice, however, there is uncertainty surrounding the information and the
process of price discovery itself involves uncertainty. In certain situations, a correct piece
of information might not get incorporated into the price right away. If the price moves
temporarily in the opposite direction of his information, the arbitrageur might in fact lose
money trading this information. This argument, proposed by Shleifer and Vishny (1997)
and often referred to as “limits to arbitrage” can help explain why bubble can keep building
up even when many people are calling it a bubble.

When Alan Greenspan, the then chairman of the Fed, gave the famous “irrational exuber-
ance” speech in December 1996, the Nasdaq was around 1,300. Initially, the stock markets
around the world dropped precipitously in reaction to the speech. But the markets soon
shrugged off the warning and started the most spectacular upward trajectory in the history
of Nasdaq. A little over three years after the speech, on March 10, 2000, the Nasdaq peaked
at 5,048.62. Then it went down as fast as it came up, and bottomed near 1,140 two and half
years later on October 4, 2002.

One person who shared the same view with chairman Greenspan was Prof Shiller, who later
wrote a book titled “irrational exuberance.” Prof Shiller also shared the 2013 Nobel Prize
with Prof Fama and Hansen. It was said that Prof Shiller, following his own prediction
about the internet bubble, actually shorted the Nasdaq in the late 1990s, only to lose money
because the market kept its upward trajectory for too long and crashed much too late.

2 Predicting the Market Returns
What We’ve Learned? Talking about market efficiency and market predictability at a
hypothetical level is just not that interesting. Now that we are seven classes into the semester,
maybe we can start from what we’ve learned so far.

By learning about the various quant strategies, we do recognize that the alpha generated by
a quant strategy does come from a certain ability to predict the future. People might vary in
their opinion on whether the alpha comes from market inefficiency (under/over-reactions) or
systematic risk exposure. One observation I am sure that you’ve made is that quant investors
do not take a stand on the market risk. If possible, they choose to avoid the market risk by
taking long/short positions of two portfolios with similar beta exposures.

And yet, the market risk remains the most important and pervasive. You’ve probably
noticed in our Assignment 1 that market-neutral hedge funds are not really market neutral.
For example, the hedge fund index in long/short equity has a beta around 0.40. Even for

5



market-neutral hedge funds, the beta exposure is non-zero: around 0.20. Overall, the market
risk is an important risk and let’s try to understand it more.

In this class, we will focus on the “first moment” of the aggregate stock market and move
on to the “second moment” in the next class.

How Good are Investors at Predicting the Market? You must have heard this fa-
mous story about Rockefeller and his shoe shine boy. After receiving unsolicited stock
tips from his shoe shine boy in 1928, Rockefeller decided to get out of the stock market. His
rational: when a shoe shine boy started to give stock tips, the market probably was reaching
its peak.

I don’t know if the story actually happened to Rockefeller, but the gist of the story got
repeated again and again in the history of financial markets. Last year, from July 2014 to
July 2015, I was on sabbatical and spent most of my time in Shanghai with my parents. I
was living a very simple life, far away from the financial establishments in Shanghai. Yet
one can hardly avoid the hype and then the disappointment of the stock market. I had to
tell my 80-year old father repeatedly that his optimal allocation to the stock market is zero,
regardless of how much money other people were making out of the market.

The empirical evidence paints a similar story: investors have no ability to predict the future.
In fact, their prediction is a response to the stock market. When the markets are doing
well, their prediction is optimistic; when the markets are doing poorly, they become pes-
simistic. Moreover, their prediction affects their behavior. The flow to equity mutual fund
is driven heavily by the recent stock market performance. The same pattern of flow chasing
performance can also be found in bond mutual funds.

Use Past Returns to Predict: For anyone wanting to predict the stock market, probably
the very first regression would be:

Rt+1 = a+ ρRt + ϵt+1 .

Given the time-series data, this is the easiest regression to run. The results are mixed,
depending on the horizon over which this regression is run. At the monthly horizon, the
autocorrelation ρ is generally positive and statistically significant. The magnitude is small
for the value-weighted portfolio and becomes larger for the equal weighted portfolio. But
this result is not very stable and could flip sign or become insignificant during sub-sample
analyses. Overall, the R-squared of this predictive regression is very small, indicating that
much of the future returns remains unpredictable.

In academic, there is a pretty large literature on this topic: If you are interested, you can
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read “Permanent and Temporary Components of Stock Prices” by Fama and French (1988),
who ran this regression over a horizon of 3-5 years and found large negative autocorrelations.
In “Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specifi-
cation Test,” Lo and MacKinlay (1988) propose the innovative variance ratio test as an
alternative to the regression analysis. In “When are Contrarian Profits due to Stock Market
Overreaction?” Lo and MacKinlay (1990) explain that despite negative autocorrelation in
individual stock returns, weekly portfolio returns are positively autocorrelated and are the
result of important cross-autocorrelations.

Stock Returns and Business Cycle: In any Finance model, one main driver for stock
returns should be the underlying economic condition. Nevertheless, the link between the
two is not that strong in the data. For example, Prof. Shiller wrote a paper in 1984 entitled,
“Do Stock Prices Move Too Much to be Justified by Subsequent Change in Dividend?” In
this paper, he made the observation that the stock market is too volatility (e.g., 20% per
year) compared to the volatility in the fundamental: dividends or earnings.

If you plot the time-series of realized stock returns against the business cycle, you do find a
link between the two. In particular, depressed expected business conditions are associated
with high expected excess returns. This observation gives rise to predictive regressions using
a set of variables that are related to business conditions, including default spreads, term
premiums, and dividend-price ratio. By far, the best predictor for stock market returns is
the dividend-price ratio. We will re-visit the default spread and term premium as we cover
the fixed-income market.

Dividend-Price Ratio as a Predictor: Let’s run this regression at the annual frequency:

Rt+1 = a+ b

(
D

P

)
t

+ ϵt+1 ,

where D/P is the dividend-price ratio (aggregate dividend divided by the value-weighted
CRSP index). The general finding that is the coefficient b of this predictive regression is
positive and statistically significant.

The key to this regression is 1/P. The aggregate price level is usually depressed during poor
business condition (e.g. recessions). Going forward, the stock return is expected to be high.
Hence the positive regression coefficient. Using D/P is just a way to scale the overall time
trend of stock price increase. Using aggregate earnings, one can use replace D/P by E/P,
although the earnings number is more noisy and biases the regression coefficient downward.

One important observation of this predictive regression is that the power of predictability
is very weak even for the best predictor. At an annual frequency, the R-squared of this
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predictive regression is around 5%, indicating that 95% of the future variance remains un-
predictable.

Market Timing as a Trading Strategy: This kind of result explains why market timing
is not a very popular trading strategy among market participants. Of course, there is nothing
wrong with taking a long position on the market if your objective is to be compensated from
such a risk exposure. But if you are in and out of the market with the belief that you can
predict the market, then you should be very careful. The empirical evidence tells you that
you are going to be exposed to quite a bit of uncertainty. Moreover, this is a very special
kind of uncertainty — the market risk, the most dangerous kind.

This is why David Swensen wrote in his book, “Market timing, according to Charles Ellis,
represents a losing strategy: There is no evidence of any large institutions having anything
like consistent ability to get in when the market is low and get out when the market is high.
Attempts to switch between stocks and bonds, or between stocks and cash, in anticipation
of market moves have been unsuccessful much more often than they have been successful.
Serious investors avoid timing markets.”

Predicting Bond Returns: Let’s start with Fama and Bliss (1987). Consider the follow-
ing simple strategy: At time t, purchase a discount bond, Pt,n, with n years to mature. One
year later at time t+1, sell the same bond, Pt+1,n−1, which has n− 1 years to maturity. The
log-return of this “long-bond” strategy is

h
(n)
t+1 = lnPt+1,n−1 − lnPt,n .

Alternatively, one can purchase a one-year discount bond and wait for it to mature one
year later. The log-return on this “short-bond” strategy is known at time t to be rt,1,
the continuously compounded one-year yield. The difference between the two, h(n)

t+1 − rt,1,
indicates how attractive long-term bonds are relative to the short-term bond.

Just like what we’ve learned from the equity market, a lot of effort has been put into
predicting the excess return of long term bonds. The conditioning information used in this
type of predicative regressions, however, is more straightforward. Fama and Bliss (1987) use
the n-year forward-spot spread to predict the excess return of a n-year bond,

h
(n)
t+1 − rt,1 = a+ b

(
f
(n)
t − rt,1

)
+ ϵ

(n)
t+1 ,

where
f
(n)
t = lnPt,n−1 − lnPt,n ,
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is the time-t forward rate from n− 1 to n.

According to the expectations hypothesis, long yields are the average of future expected
short yields, indicating that excess returns should not be predictable. Fama and Bliss (1987)
find that the yield spread can in fact predict long-bond returns with R-squared about 18%.
Campbell and Shiller (1991) provide further evidences against the expectations hypothesis.
The bond predictability was further refined and extended by Cochrane and Piazzesi (2005),
who find that a single factor, a single tent-shaped linear combination of forward rates,
predicts excess returns on one- to five-year maturity bonds with R-squared up to 44%. The
return-forecasting factor is countercyclical and forecasts stock returns.

Predicting Currency Returns: In this domain, the currency carry strategy provides the
strongest evidence of return predictability, although this predictability requires a cross-
section of currencies. Focusing on one currency, there is no well-established empirical results
on predictability, although some of the largest directional trading profits in macro hedge
funds were from the currency market.

3 Time-Varying Return Volatility
Just when Prof. Fama and his PhD/MBA students were busy working on the cross section
of expected stock returns, another area of Finance was taking shape. In this area, tools
developed in Econometrics and Statistics are applied to financial time series such as the
time-series of stock returns. Given how difficult it is to estimate the first moment (expected
returns), much of the attention was devoted to estimating the second moment, stock return
volatility. The most visible figure in this area is Prof. Rob Engle, who was awarded a Nobel
Prize in 2003 for “methods of analyzing economic time series with time-varying volatility
(ARCH).” The ARCH paper was published in 1982 when Prof. Engle was an Economics
professor at UCSD. The more famous GARCH extension was later published in 1986 by his
PhD student Prof. Bollerslev.

3.1 Market Risk Measurement

Need for Better Risk Management Tools: In the early 1990s, there were two develop-
ments that made volatility models attractive and relevant. First, the need of a better option
pricing model becomes quite obvious after the 1987 stock market crash. The Black-Scholes
model builds a very good foundation, but it lacks flexibility in handling the richer reality.
In the Black-Scholes model, stock returns are normally distributed with a constant volatility
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σ. Any casual inspection of the data would inform us that volatility is not a constant. So
having a better volatility model would be a first step toward a better option pricing model.

Second, and even more pressing was the need for better risk management tools. The
mortgage-backed security was developed in the 1980s, and the over-the-counter derivatives
market started to take off by the late 1980s. By the early 1990s, the increasing activity
in securitization and the increasing complexity in the fixed-income products have made the
trading books of many investment banks too complex and diverse for the chief executives to
understand the overall risk of their firms.

It was an industry wide phenomenon. For example, in “Money and Power,” Cohan wrote
about the difficult year of 1994 at Goldman after the two amazingly profitable years in fixed-
income in 1992 and 1993. In the book, he quoted Henry Paulson, “What came out of the
1994 debacle was best practices in terms of risk management, The quality of the people, and
the processes that were put in place – anything from the liquidity management to the way
we evaluated risk and really the independence of that function – changed the direction of
the firm.”

JPMorgan’s RiskMetrics: Among all Wall Street firms, JPMorgan’s effort was by far the
most visible and influential. The 2009 New York Times article titled “Risk Mismanagement”
gave a very good account of the events.

JPMorgan’s chairman at the time VaR took off was a man named Dennis Weath-
erstone. Weatherstone, who died in 2008 at the age of 77, was a working-class
Englishman who acquired the bearing of a patrician during his long career at the
bank. He was soft-spoken, polite, self-effacing. At the point at which he took
over JPMorgan, it had moved from being purely a commercial bank into one of
these new hybrids. Within the bank, Weatherstone had long been known as an
expert on risk, especially when he was running the foreign-exchange trading desk.
But as chairman, he quickly realized that he understood far less about the firm’s
overall risk than he needed to. Did the risk in JPMorgan’s stock portfolio cancel
out the risk being taken by its bond portfolio – or did it heighten those risks?
How could you compare different kinds of derivative risks? What happened to
the portfolio when volatility increased or interest rates rose? How did currency
fluctuations affect the fixed-income instruments? Weatherstone had no idea what
the answers were. He needed a way to compare the risks of those various assets
and to understand what his companywide risk was.

What later became RiskMetrics was an internal effort developed within JPMorgan in 1992
in response to the CEO’s question. Quoting the New York Times article again,
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By the early 1990s, VaR had become such a fixture at JPMorgan that Weath-
erstone instituted what became known as the 415 report because it was handed
out every day at 4:15, just after the market closed. It allowed him to see what
every desk’s estimated profit and loss was, as compared to its risk, and how it all
added up for the entire firm. True, it didn’t take into account Taleb’s fat tails, but
nobody really expected it to do that. Weatherstone had been a trader himself;
he understood both the limits and the value of VaR. It told him things he hadn’t
known before. He could use it to help him make judgments about whether the
firm should take on additional risk or pull back. And that’s what he did.

Global Risk Factors: In 1994, JPMorgan started to make RiskMetrics publicly available.
It published its technical document outlining its risk measurement methodologies. It also
made available two sets of volatility and correlation data used in the computation of market
risk. In Spring 1996, I was hired as a research assistant to Prof. Darrell Duffie to work on
risk management and Value-at-Risk. I spent a lot of time reading the technical document
of RiskMetrics and I also downloaded the volatility and correlation dataset everyday just to
play with them and track the movements. It was through having to deal with the datasets
that the immensity of the global financial markets became real to me.

For example, the 1996 RiskMetrics data files covered over 480 financial time series that were
important for the trading books of most investment banks. This includes

• Equity indices across the world.

• Foreign exchange rates.

• The term structure of interest rates across the world:

– money market rates (1m, 3m, 6m, and 12m) for the short end.
– government bond zero rates (2y, 3y, 4y, 5y, 7y, 9y, 10y, 15y, 20y, and 30y) for the

longer end.

• The term structure of swap rates across the world (2y, 3y, 4y, 5y, 7y, and 10y).

• Commodities: spot and futures of varying maturities.

Variance-Covariance Matrix: In order to measure the firm-wide risk exposure, one need
to first map each position to these risk factors, and then calculate the volatility of the overall
portfolio or portfolios by asset class: interest rates, equity, currency, and commodities. One
of the key building block of this calculation is the variance-covariance matrix of the risk
factors. For the 480 risk factors used by JPMorgan in 1996, this involves calculating the
volatility for each of the 480 risk factors, and then calculate the pair-wise correlations between
the 480 risk factors. In the rest of the class, we will be busying doing these calculations.
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Let me quote a few paragraphs from the 2012 annual report of Goldman Sachs so as to give
you an update on the risk management effort on Wall Street since 1996.

We also rely on technology to manage risk effectively. While judgment remains
paramount, the speed, comprehensiveness and accuracy of information can ma-
terially enhance or hinder effective risk decision making. We mark to market
approximately 6 million positions every day. And, we rely on our systems to run
stress scenarios across multiple products and regions. In a single day, our systems
use roughly 1 million computing hours for risk management calculations.
When calculating VaR, we use historical simulations with full valuation of ap-
proximately 70,000 market factors. VaR is calculated at a position level based
on simultaneously shocking the relevant market risk factors for that position. We
sample from 5 years of historical data to generate the scenarios for our VaR calcu-
lation. The historical data is weighted so that the relative importance of the data
reduces over time. This gives greater importance to more recent observations and
reflects current asset volatilities, which improves the accuracy of our estimates of
potential loss. As a result, even if our inventory positions were unchanged, our
VaR would increase with increasing market volatility and vice versa.

As you can see, roughly 6 million positions are mapped into 70,000 market factors in Gold-
man’s risk management system. If I understand their statement correctly, this implies a
variance-covariance matrix of 70,000 by 70,000.

Back in the mid-1990s, all three of my Chinese classmates at the NYU Physics department
went to work at Citibank after graduation. I was the only exception, who went on to get
another PhD in Finance. So much for the future of Physics, which was better off without us.
During one of my visits back to New York, I visited them at Citibank, thinking how exciting
it was for them to be working in the real world with a real paycheck. And I was very surprised
to see how bored they all looked. One of them worked in the risk management group and his
job was to calculate the variance-covariance matrix everyday. He looked miserable. I guess
this is not the most exciting job if you have to do it everyday. Many years later, I got an
email from Mr. Variance-Covariance, who has become a managing director at Citibank. A
happy ending, by Wall Street standard.

3.2 Estimating Volatility using Financial Time Series

In general, volatility is very easy to estimate. Unlike in the case of expected returns, volatility
can be measured with better precision using higher frequency data. The convention in this
field is to use daily data. For stock market returns, having one month of daily data could get
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you a pretty accurate estimate. We will continue to use the time series of aggregate stock
returns as an example.

I should mention that in this field, log returns are being used more often than percentage
returns:

Rt = lnSt − lnSt−1 ,

where St could be date-t stock price, currency rate, interest rate, or commodity futures price.
At the daily frequency, the magnitude of returns are generally very small. Using the handy
Taylor expansion, we know that for small x,

ln(1 + x) ≈ x .

Repeating this for log-returns, we have

Rt = lnSt − lnSt−1 = ln

(
St

St−1

)
= ln

(
1 +

St − St−1

St−1

)
≈ St − St−1

St−1

.

In other words, working with log-returns or percentage-returns does not make too much of
a difference when returns are small in magnitude.

Also notice that our attention is no longer on the first moment. Getting the volatility
right is our main task. We calculate the variance by,

var(Rt) = E (Rt − µ)2 = E(R2
t )− µ2 .

The volatility estimate is

std(Rt) =
√

var(Rt) =
√

E(R2
t )− µ2 =

√
E(R2

t )×

√
1− µ2

E(R2
t )

.

At the daily frequency, µ is around a few basis points for the US equity market, while the
daily volatility is around 100 basis points (i.e., 1%). As a result, µ2/E(R2

t ) is a really really
small number and

√
1− µ2/E(R2

t ) ≈ 1 − 1
2
µ2/E(R2

t ) is very close to one. So it does not
make a big difference whether or not we subtract µ from the realized returns such as Rt in
estimating the volatility. You will notice that most of the time, people drop µ for simplicity:

std(Rt) ≈
√

E(R2
t ) .

Of course, this relationship between daily vol and daily µ exists mostly true for assets in
the risky category. For fixed income product, this might not be true. If you would like to
be safe, one way to approach the data is to first demean the time-series data: Rt − µ, and
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Figure 1: Time-Series of Stock Volatility using SMA.

then apply the volatility models.

SMA: The simple moving average model fixes a window, say one month, and use the daily
returns within this window to calculate the sample standard deviation. The window is then
moved forward by one step, say one day, and the whole calculation gets repeated again.

In Figure 1, I use a moving window of one month and move the window one month at a time
to plot a monthly time-series of SMA volatility estimates. In this space, volatility is usually
quoted at an annualized level. So I multiply the volatility estimates by

√
252 (assuming 252

business days per year). This annualized volatility corresponds to the volatility coefficient
σ in the Black-Scholes model. So we also compare these volatility numbers with the option-
implied volatility.

Just so you are convinced that these volatility estimates can be estimated with a pretty good
precision using only one month of daily data, I also plotted the 95% confidence intervals. If
you compared Figure 1 against Figure 2, you can see the marked difference in estimation
precision. Using one month of daily data to estimate the average return, what you get is
very much noise.

Another observation I would like you to make is the variation of market volatility over time.
Its pattern is very different from that of market returns. Volatility is persistent: a day of
high volatility is usually followed by another day of high volatility. Volatility also tends to
spike up once in a while. If you plot these events against the NBER business cycles, you
see that volatility usually spikes up during recessions. But recessions are not the only time
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Figure 2: Time-Series of Monthly Average Stock Returns using SMA.

when volatility spikes up. Whenever the market is in trouble, volatility goes up. Let me
name a few recent events: the 1987 stock market crash, the 1997 Asian Crisis, the 1998
LTCM crisis, the 2000-01 tech bubble/burst, the 9/11, and the 2008 financial crisis. Finally,
whenever volatility is at an usually high or low level, it tends to revert back to its historical
average. This pattern is called mean reversion. Using a longer sample that includes the
Great Depression, the historical average of volatility is around 20%. Using the more recent
sample, the average volatility is around 15%.

The plot has not been updated for the last few years. Nowadays, the best place to get
stock market volatility (without having to do any calculation) is the CBOE VIX index. For
example, over the one-week period from August 17 to 24, 2015, the VIX shoots up from
13.02% to 40.74%, because of the concern over the Chinese stock market.

Comparing the volatility estimate with the VIX index, which is effectively the option implied
volatility, you notice that the option implied volatility seems to be consistently higher than
the volatility estimate. We will visit this issue again when we cover the options market.

EWMA: The exponentially weighted moving average model is an improvement over the
SMA model. Instead of applying equal weights to all observations with a fixed window,
EWMA applies an exponential weighting schedule. It chooses a decay factor λ, which is a
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Figure 3: The Exponential Weighting Scheme in EWMA.

number between zero and one, and performs the volatility estimate by:√√√√(1− λ)
N∑

n=0

λn (Rt−n)
2 .

Let’s first put aside the term 1 − λ and focus on the terms within the summation. We put
a weight of 1 for today (n = 0), λ for yesterday, λ2 for the day before yesterday, and so on.
With this weighting schedule, as we move further back into the history and away from today
t, the contribution of (Rt−n)

2 decreases according to the exponential schedule. Hence the
name. Figure 3 gives a graphical presentation of this exponential weighting scheme.

Going back to one of the paragraphs I quoted from Goldman’s annual report: “We sample
from 5 years of historical data to generate the scenarios for our VaR calculation. The
historical data is weighted so that the relative importance of the data reduces over time. This
gives greater importance to more recent observations and reflects current asset volatilities,
which improves the accuracy of our estimates of potential loss.” So effectively, the length of
the window N is set at five years and a decay factor is selected to put more weight to the
more recent events. In Goldman’s report, the value of the decay factor was not reported.
In RiskMetrics, λ was fixed at 0.94 for all time series. Also, the choice of the window
size is not important because the decay factor λ effectively selects the window size for you.
Figure 3 gives a nice graphical presentation on how the window size is determined by the
decay factor: a strong decay factor (λ = 0.8) implies a smaller window while a mild decay
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factor (λ = 0.97) implies a larger window. A window of 5 years is definitely not necessary:
the return happened 5 years ago has a weight of λ5×252, which is too small to matter.

Now let’s come back to the term 1− λ. Notice that

1 + λ+ λ2 + λ3 + . . . = 1/(1− λ) .

So (1 − λ) is there because of normalization. In the same way, the normalization factor
in the SMA model is 1/N. In the SMA model, if I increase the window size N, then each
observation carries a smaller weight: a smaller 1/N. Likewise, if I change λ from 0.94 to 0.97
in EWMA, the effective window size increases (see Figure 3). As a result, each observation
carries a smaller weight: a smaller 1− λ.

SMA and EWMA: The difference between these two volatility estimates becomes most
visible immediately after a large price movement. Figure 4 uses the famous Black Wednesday
of 1992 as an example to illustrate this point. This technical document by RiskMetrics was
first written around 1994. If it were written today, then the 2008 crisis would be plotted
here as an example.

After a large price movement, up or down, the response of the EWMA estimate is very fast,
because it carries a higher weight for the most recent event. If the market calms down after
the large price movement, then the EWMA estimate will soon come down to a lower level.
The behavior of the SMA estimate is the opposite. Its response is typically sluggish and it
carries that piece of information for the duration of its window size. For this reason, the
EWMA is the preferred volatility estimate when it comes to monitoring market volatility at
the daily frequency.

Black Wednesday 1992: As a side, the 1992 sterling crisis was an important event in the
global currency market. The followings are excerpts from Steven Drobny’s book on “Inside
the House of Money: Top Hedge Fund Traders on Profiting in the Global Markets.”

The United Kingdom joined the European Exchange Rate Mechanism (ERM) in 1990 at a
central parity rate of 2.95 deutsche marks to the pound. To comply with the ERM rule, the
UK government was required to keep the pound in a trading band within 6 percent of the
parity rate. In September 1992, as the sterling/mark exchange rate approached the lower
end of the trading band, traders increasingly sold pounds against deutsche marks, forcing the
Bank of England to intervene and buy an unlimited amount of pounds in accordance with
ERM rules. Finally, on the evening of September 16, 1992, Great Britain humbly announced
that it would no longer defend the trading band and withdrew the pound from the ERM
system. The pound fell approximately 15 percent against the deutsche mark over the next
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Figure 4: The Black Wednesday 1992 and the Volatility Estimates of SMA and EWMA.

18



few weeks, providing a windfall for speculators and a loss to the UK Treasury (i.e., British
taxpayers) estimated to be in excess of £3 billion.

It was reported at the time that Soros Fund Management made between $1-2 billion by
shorting the pound, earning George Soros the moniker “the man who broke the Bank of
England.” But he was certainly not alone in betting against the pound. In fact, the term
global macro first entered the general public’s vocabulary on Black Wednesday.

Going back to our class on Predictability and Market Efficiency, there are few things to be
learned. First, you predict the market by following the information, which, in this case,
includes the ERM rule, the economic condition at UK, the government’s ability and political
resolve to defend its currency. Second, the “arbitrage” is risky. In order for George Soros to
make $1 billion with a 15% drop in sterling, his short position at the time had to be over
$6 billion. This is the style of global macro: large and risky directional bets. Of course,
they don’t always make money and we’ve seen a few times when Soros lost by the same
order of magnitude. Third, most of the global macro opportunities (or losses) in currencies
and emerging markets happened because of some frictions outside of the financial markets:
currency pegging, government intervention, central bank and policy errors, etc. As the
governments and central banks become smarter in their interaction with the markets, such
outsize returns may be slowly going away.

Computing EWA Recursively: Today is day t − 1. Let σt be the EWMA volatility
estimate using all the information available on day t − 1 for the purpose of forecasting the
volatility on day t. Notice the dating convention: the time-t estimate is observed on day
t− 1. In my personal opinion, we should date σt by t− 1, not t. But this is the convention
in this area. So let’s go with convention.

Moving one day forward, it’s now day t. After the day is over, we observe the realized return
Rt. We now need to update our EWMA volatility estimator σt+1 using the newly arrived
information (i.e. Rt):

σ2
t+1 = λσ2

t + (1− λ)R2
t . (1)

A good exercise for you would be to start right from the beginning,

σ2
2 = λσ2

1 + (1− λ)R2
1

and then apply the recursive formula a few times to convince yourself that this recursive
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approach does get you the exponential weighting scheme of EWMA:

σ2
3 = λσ2

2 + (1− λ)R2
2 = λ2 σ2

1 + (1− λ)
(
λR2

1 +R2
2

)
σ2
4 = λσ2

3 + (1− λ)R2
3 = λ3 σ2

1 + (1− λ)
(
λ2R2

1 + λR2
2 +R2

3

)
. . .

σ2
t = λt−1 σ2

1 + (1− λ)
(
λt−2R2

1 + λt−3R2
2 + . . .+R2

t−1

)
For those of you who like things to be precise: as t → ∞, we are back to the exact formulation
of the EWMA. And whatever σ1 we started with does not make a difference.

If you are an Excel user, you will appreciate the convenience of this recursive formula. If
you care about saving CPU time, you will also appreciate the convenience of this recursive
formula. When we update the information on day t to calculate σt+1, all of the past in-
formation has been neatly summarized by σt. The new information waiting for us to be
included is the realization of Rt. We weight the new information R2

t by 1 − λ and “decay”
the old information σ2

t by λ. Adding these two pieces together, we get the updated variance
estimate. It would be difficult not to appreciate the elegance of this recursive approach. No?

Auto-Correlation Coefficient: Another way to understand the recursive formula of Equa-
tion (1) is that imposes the dynamic structure of σ2: persistent with an auto-correlation
coefficient of λ.

Recall that we regress stock return Rt+1 on its own lag Rt to examine the stock return
predictability. We find that from 1926 to 2004, the auto-correlation coefficient is positive
and statistically significant. But the magnitude of the correlation is very small. Moreover,
this predictability is not very robust: over the various subsamples, the auto-correlation
coefficients become statistically insignificant. In other words, the random walk model with
zero auto-correlation is a reasonable model for the stock returns.

When it comes to the dynamic structure of volatility, however, the auto-correlation coefficient
plays a rather important role. Models such as EWMA and GARCH became popular in
practice because they allow volatility to be persistent with a high auto-correlation coefficient.
In estimating the auto-correlation in stock returns, we can simply run a regression. In the
case of volatility, however, we need to estimate the volatility along with the coefficient λ. For
this, we need a more structured estimation approach than a regression. (If you get into this
area called Econometrics, you will realize that the essence is really the same. In particular, a
linear regression is really the product of a maximum likelihood estimation. See Appendix A.)

Estimating the Decay Factor: Figure 3 provides a graphical connection between the de-
cay factor λ and the sample size. A strong decay factor, say λ = 0.8, pays more attention
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to the current events and underweights the far-away events more strongly. As a result, the
effective sample size is smaller with a stronger decay factor (e.g., smaller λ). As you can see
from Figure 5, a strong decay factor improves on the timeliness of the volatility estimate,
but the smaller sample size makes the estimate noisier and less precise. On the other hand,
a weaker decay factor, say λ = 0.97, improves on the smoothness and precision, but that
estimate could be sluggish and slow in response to changing market conditions, as reflected
in Figure 5. So there is a tradeoff.

Minimize RMSE: Let’s consider two ways to pick the optimal decay factor. In the first
approach, we would like to minimize the forecast error between the model’s prediction and
the actual realization. Recall, on day t, we form σt+1 as a forecast for the volatility on day
t + 1. So the model’s forecast error is R2

t+1 − σ2
t+1. Summing these forecast errors over the

sample period, we calculate the root mean squared error (RMSE) by,

RMSE =

√√√√ 1

T

T∑
t=1

(
R2

t+1 − σ2
t+1

)2
Note that the only parameter at our disposal is λ. Everything else comes from the data. So
let’s find the optimal λ∗ that minimizes the forecast error:

λ∗ = arg min
λ∈(0,1)

RMSE = arg min
λ∈(0,1)

√√√√ 1

T

T∑
t=1

(
R2

t+1 − σ2
t+1

)2
MLE: In the second approach, let’s use the maximum likelihood estimation. To be honest,
using the MLE on this problem is really an overkill, but I would like to use this opportunity
to introduce you to MLE. Anybody working with data should have done MLE at least once
in their life.
Recall that we talk about the pdf of a normal, which is a Gaussian function. In our current
setting, the volatility is time-varying. So the stock return Rt+1 is normally distributed only
when conditioning on the volatility estimate σt+1:

f (Rt+1|σt+1) =
1√

2πσt+1

e
−

R2
t+1

2σ2
t+1 .

Notice that if I wanted to be very precise, I should have replaced R2
t+1 by (Rt+1 − µ)2 and

use the MLE to estimate both λ and µ. But we talked about this. Setting µ = 0 here is a
good compromise to make.
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Figure 5: Time Series of EWMA Volatility Estimates with Varying Decay Factors.
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The next step of MLE is to take log of the pdf:

ln f (Rt+1|σt+1) = − lnσt+1 −
R2

t+1

2σ2
t+1

,

I dropped 2π since it is a constant will not affect anything we will do later. We now add
them up to get what econometricians call log-likelihood (llk):

llk = −
T∑
t=1

(
lnσt+1 +

R2
t+1

2σ2
t+1

)

As you can see, the only parameter in llk is our choice of λ. It turns out that the best λ is
the one that maximizes llk. In practice, we take -llk and minimize -llk instead of maximizing
llk.

What we just did came straight out of Econometrics. A good textbook on this topic is
the Time Series Analysis by James Hamilton. Read in particular the chapter on General-
ized Method of Moments. Most of the econometrics tasks we encounter in Finance can be
understood from the perspective of GMM, which was developed by Prof. Lars Hansen at
University of Chicago. Prof. Hansen shared the 2013 Nobel Prize with Prof. Eugene Fama
and Prof. Robert Shiller. In the Appendix, I include my old PhD-era code for estimating
the standard errors of mean, std, skewness, and kurtosis. As you can see, my approach was
very much influenced by the GMM approach. In the Appendix, I wrote a brief note on MLE
and linear regression, which could be a nice entry point to motivate you to learn more about
Econometrics.

ARCH and GARCH: The ARCH model, autoregressive conditional heteroskedasticity,
was proposed by Professor Robert Engle in 1982. The GARCH model is a generalized
version of ARCH. ARCH and GARCH are statistical models that capture the time-varying
volatility:

σ2
t+1 = a0 + a1R

2
t + a2 σ

2
t

As you can see, it is very similar to the EWMA model. In fact, if we set a0 = 0, a2 = λ, and
a1 = 1− λ, we are doing the EWMA model.

So what’s the value added? This model has three parameters while the EWMA has only
one. So it offers more flexibility (e.g., allows for mean reversion and better captures volatility
clustering). If you are interested in estimating the GARCH model, you can use the MLE
method we just discussed. Instead of estimating σt+1 using EWMA, you use the GARCH
model. The EWMA has only one parameter λ to estimate. The GARCH model has three
parameters to estimate a0, a1, and a2. You will find that, just like λ, a2 is very close to one.
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In fact, a2 captures the auto-correlation of the variance σ2
t : an autocorrelation coefficient

that is close to one indicates a very persistent time series. Moreover, after some calculation,
you notice that the long-run mean of the variance in this model is a0/(1− a1 − a2). You can
see how having additional parameters could provide more flexibility to the model.

The GARCH model has a pretty strong influence, and you are encouraged to dig deeper
into the model if it interests you. We used to study quite a bit of GARCH at Stanford
GSB. But looking back, I feel that I get most of the key intuitions by working with EWMA.
Where there are too many moving parts and too many parameters, you tend to focus more
on dealing with the formulas and parameters and lose track of the essence of the problem.
That’s why simplicity is always preferred.

EWMA for Covariance As mentioned at the beginning, our goal is to create the variance-
covariance matrix for the key risk factors influencing our portfolio. Suppose that there are
two risk factors affecting our portfolios. Let RA

t and RB
t be the realized day-t returns of

these two risk factors. We estimate the covariance between A and B by

covt+1 = λ covt + (1− λ)RA
t ×RB

t

And their correlation:
corrt+1 =

covt+1

σA
t+1σ

B
t+1

,

where σA
t+1 and σB

t+1 are the EWMA volatility estimates.

This calculation of covariance and correlation is pretty straightforward once you master the
EWMA recursive formula. But let me use this opportunity to bring in volatility as a risk
factor and emphasize on its importance. As recent as the early 2000s, volatility as a risk
factor was not widely monitored by market participants. Of course, sophisticated investors
pay attention to their exposure to volatility risk. The general intuition is that if you are
short on volatility, you are going to lose during crisis. On the other hand, if you are long
on volatility, you are partially hedged during these crises. Exposures to volatility risk comes
certain non-linearity in one’s position. The most straightforward way to be long on volatility
is to buy at-the-money S&P 500 index options. As we will cover in our options class, such
long positions usually are expensive. That is, you are paying a premium for such positive
exposures.

Since the 2008 financial crisis, the volatility risk has got a broader audience. By now, the
VIX index is reported daily in a prominent position along with the Dow, the S&P, and
Nasdaq. It’s often called the fear gauge. Figure 6 plots the historical VIX for the past 15
years. Going over the various events in the past, you can certainly appreciate why it is called
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Figure 6: Time Series of CBOE VIX.

fear gauge.

Another important observation about the volatility risk factor is its increasing negative
correlation between the market risk. Figure 7 plots the EWMA correlation estimate between
daily returns of the S&P 500 index and the daily changes in VIX. As you can this, this
correlation is always negative. The fact that there is a negative correlation between the stock
market return and its volatility has always been documented, well before CBOE published
its VIX index. As you can see, during the early sample period, the correlation was hovering
around -50%. When I was a PhD student working on this topic in the late 1990s, a typical
number for this correlation would be -60%. There is certainly a trend of this correlation
becoming more negative in recent times. After the 2008 financial crisis, this correlation has
experienced a regime switch to a more negative territory.

A negative correlation implies that whenever market drops down, the volatility goes up.
Using the interpretation of VIX as a fear gauge, this means that a down market is coupled
with increasing fear. The more negative correlation in recent years means a higher level of
sensitivity to down markets: a market sitting at its edge, more easily spooked. As we move
on to the options market, we will look at the “fear” component in VIX more closely.
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Figure 7: Time Series of CBOE VIX.

Appendix

A MLE and Linear Regression
Let’s consider the linear regression:

Yt = α + βXt + ϵt ,

where if we replace X with RM −rf and Y with Ri−rf , we are back with our favorite CAPM
regression.

Thinking in terms of MLE, we focus on the distribution of the regression residual ϵt. We
assume that ϵt is i.i.d. with normal distribution: zero mean and volatility of σϵ. Now let’s
repeat the MLE steps for this regression:

The PDF for the Residual:

f(ϵt) =
1√
2πσϵ

e
− ϵ2t

2σ2
ϵ

Log-Likelihood:

ln f(ϵt) = − lnσϵ −
ϵ2t
2σ2

ϵ

= − lnσϵ −
(Yt − α− β Xt)

2

2σ2
ϵ

,
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where 2π was again dropped.

Sample Log-Likelihood:

llk =
T∑
t=1

(
− lnσϵ −

(Yt − α− β Xt)
2

2σ2
ϵ

)

Minimize the -LLK: Find the parameter values (σϵ, α, and β) that will minimize this,

−llk = T × lnσϵ +
1

2σ2
ϵ

T∑
t=1

(Yt − α− β Xt)
2

In the EWMA case, we use the computer to minimize -llk by varying λ. In the GARCH
case, we use the computer to minimize -llk by varying a0, a1 and a2. Here, we can actually
do it by hand. Let’s forget σϵ for now, and focus on α and β. To minimize −llk is the same
as finding α and β so that

∂ llk
∂α

=

∑
(Yt − α− β Xt)

σ2
ϵ

= 0

and
∂ llk
∂β

=

∑
[Xt (Yt − α− β Xt)]

σ2
ϵ

= 0 .

Solving for the optimal α and β then reduces to solving the above two equations. The first
derivatives of llk with respect to the model parameters (e.g., α and β) are also called score.
If there are two parameters, then the score is a vector of two. In our current case, the score
should be a vector of three because there are three parameters: α, β, and σϵ. But as agreed,
let’s focus only on α and β and forget about σϵ.

Solving for the partial derivative (score) with respect to α, we have,

α =
1

T

∑
Yt − β

1

T

∑
Xt

Solving for the partial derivative with respect to β, we have∑
Xt Yt − α

∑
Xt − β

∑
X2

t = 0

Plugging the solution for α into the equation above, we have:

∑
XtYt −

1

T

∑
Xt

∑
Yt = β

(∑
X2

t −
1

T

(∑
Xt

)2)
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Let me divide both sides of the equation by T so that you can see the result more clearly,

1

T

∑
XtYt −

(
1

T

∑
Xt

) (
1

T

∑
Yt

)
= β

(
1

T

∑
X2

t −
(
1

T

∑
Xt

)2
)

What we have is,
cov(X,Y ) = β var(X)

So, as a by product of our derivation, you get to know why running a regression gets you
the CAPM beta.

Also, for those of you who think more carefully, the fact that we assume ϵ is normally
distributed might be bothering you. Don’t be. Even if ϵ is not normally distributed, we can
still do this procedure, which is called quasi-maximum likelihood estimation. The estimates
might not be the most efficient, but they are still consistent. One key calculation left out
is how to calculate the standard errors of α and β. For those of you who are interested in
learning more, I would recommend the chapters on GMM and MLE of James Hamilton’s
book on Time Series Analysis.
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