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1 Term Structure Models

• The Challenge from the Data: In the fixed income market, term structure models

are used to model interest rates. The challenge from the data has two dimensions.

First, it should take into account of how the interest rates move over time. Second, for

a given time, it should be able to model the yield curve, also called the term structure

of interest rates. Figure 1 is a good summary of these two challenges from the data:

a good term structure model should be able to capture the dynamic variations of the

level of interest rates and the shape of the yield curve.

These two demands from the data are very similar to those in the equity market. A

good model for stock market returns should be able to take into account of how stock

returns vary over time, as well as how, for a give time, the cross-section of stocks

are priced in relation to one another. In the equity market, an i.i.d. model for stock

returns is a reasonable approximation. As such, the dynamics for stock returns are

really simple: constant expected return μ, constant volatility σ, and unpredictable

random shocks εt+1. Cross-sectionally, the expected stock returns are linked to one

another through their exposures (i.e., betas) to risk factors in a model such as the

CAPM. As such, the CAPM model is a static model with constant expected returns

and constant beta.

The need for a dynamic model shows up when we investigated the time-varying volatil-

ity in our volatility class and stochastic volatility in our options class. Here in this class,

we have a chance to take a closer look at these dynamic models.

• Term Structure Models, Historical Development: Term structure models were

developed in the mid-1970s by Cox, Ingersoll and Ross (1985) and Vasicek (1997). You

1A small correction of Figure 3, which was missing a portion of the Fed target rate.
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Figure 1: Time-Series of Treasury Constant Maturity Yields.
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might notice that the CIR paper was published in 1985, but it was really a product

of the mid-1970s. These term structure models were a continuation of the work done

by Black, Merton, and Scholes, who popularized the application of continuous-time

models in Finance. Like the Black-Scholes model before them, these term-structure

models use the stochastic processes studied by mathematicians and physicists. For

example, the CIR model builds on the Feller process and the Vasicek model builds on

the Ornstein-Uhlenbeck process. In both cases, the starting point is the instantaneous

short-rate rt, which is modeled by a stochastic process (OU or Feller). The entire yield

curve is priced using the dynamics of this one short rate. As such, the CIR and Vasicek

models are one-factor short-rate models.

The second wave of term structure models came in the 1990s. When I entered the

Stanford PhD program in 1995, I was just in time to catch the excitement surrounding

term structure models. Relative to the original models of CIR and Vasicek, the effort

of the new generation of term structure models is to be empirically relevant. From the

work of Litterman and Scheinkman (1991), it became clear that a one-factor model

will not be able to capture the entire shape of the yield curve. Unlike the stock market,

where you can dismiss the risk uncaptured by the model as idiosyncratic risk, we do

not have the luxury of dismissing common risk factors in the fixed income market (e.g.,

the slope factor).

These multifactor models quickly found their way into the “real” world. It is my un-

derstanding that each investment bank has its own proprietary term-structure model.

And I was told by some practitioners that the industry has the best and most so-

phisticated term structure models. And they use these models to manage and hedge

interest-rate risk (level, slope, convexity, volatility, etc) as well as to price interest-rate

derivatives and other rate-sensitive instruments such as MBS. Looking back, I can now

understand why during the mid-1990s, the Wall Street hired so many physicists and

mathematicians. Most of my classmates in Physics ended up on Wall Street. I can also

understand the sudden demand for more sophisticated term structure models in the

1990s. The fixed income desks were very profitable and the range and trading volume

of their fixed income products were also expanding very rapidly during that time.

By now, the excitement surrounding term structure models has all but fizzled out. As

a PhD student at Stanford, I spent much more time learning and working on term-

structure models than anything else I did there. Since coming to Sloan in 2000, I have

not made much use of that part of my training. Nevertheless, I am very grateful to

my advisers at Stanford for having trained me in this area. As I wrote earlier in my
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lecture notes, not everything we do in life is of practical use. Still, they are useful and

meaningful in our growth process.

For our class, however, I don’t want to emphasize too much on the modeling part,

because it takes quite a bit of mathematical skills. Instead, I would like to use the

term structure models as a way for us to understand conceptually how the various

parts of the yield curve are connected through a pricing model and the role of the risk

factors in generating the pricing results.

• Bond Pricing in Continuous-Time: Let rt be the time-t instantaneous short rate.

Let today be time 0, and let P0 be the present value of a dollar to be paid in T years.

Discounting this future dollar all the way from T to today using the short rate, we

have:

P0 = E
(
e−

∫ T
0 rt dt

)
(1)

Let me explain this expression in sequence:

– The reason why we need to do
∫ T

0
rt dt is because we have to add up all of the

future short rates along the path from 0 to T . Take the extreme example of a

constant short rate r. We have
∫ T

0
rt dt = r T and P0 = e−r T .

– We put
∫ T

0
rt dt onto e−

∫ T
0 rt dt because the rates are continuously compounded.

(You will find that working with ex and ln(x) typically gives us a lot of tractability

in Finance.)

– Later on, we will see how rt is going to be driven by a random risk factor. Because

of this, there could be many paths of rt, depending on the random outcomes of

the risk factor. And the present value of a future dollar to be paid in year T is

an expectation, E (·), taken over all potential random paths of rt with t running

from 0 to T .

• Relating back to Option Pricing: The calculation in Equation (1) is similar to the

calculation of EQ
(
e−rT (K − ST ) 1ST<K

)
in option pricing. The difference is that we

do not have to deal with the random variation in ST . But we have to deal with the

random variation in the riskfree r, which turns out to be more difficult to deal with.

Instead of fixing a maturity date for this interest rate r (as in yields to maturity), we

choose to work with the “short rate” so that this one rate can be used to discount

future cashflows over any horizon. We just need to add them up via
∫ T

0
rt dt.

A by-product of this modeling choice is that we now have to keep track of the entire path

of rt from 0 to T in order to calculate
∫ T

0
rt dt. Remember that when you performed
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option pricing via simulation in your Assignment 3, you didn’t have to keep track the

path of ST from 0 to T . You only needed to know the values of ST . So in order to

have one million scenarios of ST , you needed to simulate one million random variables.

To price bonds, however, you need to simulate the entire path of rt from 0 to T .

Suppose we decide to discretize the time interval from 0 to T into monthly intervals,

then pricing a one-year bond with one million scenarios would involve simulating 12 ×
one million random variables; pricing a 10-year bond would involve simulation 120 ×
one million random variables. In short, pricing bond is generally more involving than

pricing equity options and pricing bond derivatives would be even more challenging.

That is why models with closed-form solutions are very useful. Otherwise, we will have

to resort to either simulations or solving partial differential equations.

Also notice that to be precise, I should take the expectation in Equation (1) under the

risk-neutral measure. For this class, however, let me not make a distinction between

the two, just to keep things simple.

• The Vasicek Model: In the Vasicek model, the short rate rt follows

drt = κ (r̄ − rt) dt+ σ dBt , (2)

where, as in the Black-Scholes model, σ dBt is the diffusion component with B as a

Brownian motion. This model has three parameters:

– r̄: The long-run mean of the interest rate, r̄ = E(rt).

– κ: The rate of mean reversion. When rt is above its long-run mean r̄, r̄ − rt is

negative, exerting a negative pull on rt to make it closer to r̄. A larger κ amplifies

this pull of mean reversion and a smaller κ dampens it. Conversely, when rt is

below its long-run mean r̄, r̄ − rt is positive, exerting a positive pull on rt, again

to make it closer to its long-run mean r̄.

– σ: controls the volatility of the interest rate.

• Bond Pricing under Vasicek: Bond pricing under the Vasicek model turns out of

be very simple. Let today be time t and let rt be today’s short rate, then the time-t

value of a dollar to be paid T years later at time t+ T is

Pt = eA+B rt ,
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where

B =
e−κT − 1

κ

A = r̄

(
1− e−κT

κ
− T

)
+

σ2

2κ2

(
1− e−2κT

2κ
− 2

1− e−κT

κ
+ T

)

2 Calibrating the Model to the Data

• The Vasicek Model: As usual, we work with models in order to understand, at a

conceptual level, the key drivers in the pricing of a security. Applying the model to

the data, we further understand quantitatively how well the model works and what’s

missing in the model.

For a one-factor model such as the Vasicek model, we know its limitation even before

applying it to the data. In the fixed income market, the level of the interest rates is

the number one risk factor in terms of its importance, but it is not the only risk factor.

In Assignment 4, I ask you to work with a discrete-time version of the Vasicek model

by first estimating the model parameters, r̄, κ, and σ, using the time-series data of

3-month Tbill rates. Basically, I am asking you to calibrate the model only to the

time-series information of the short-end of the yield curve, without allowing you to

take into account of the information contained in the other parts of the yield curve.

Then I ask you to price the entire yield curve. Not surprising, you will find that the

calibrated model does not work very well to accommodate the different shapes of the

yield curve.

An alternative approach is to calibrate the model using the yield curve. For example,

on any given day, we estimate the model parameters, r̄, κ, and σ, so that the pricing

errors between the model yields and the market yields are minimized. By doing so,

the model will do a much better job in matching the market observed yield curve, but

it will miss the time-series information. Moreover, you will have one set of parameters

per day, which is inconsistent with the assumption that these parameters are constant.

The better solution is to introduce more factors to the model. For example, instead

of forcing the long-run mean r̄ to be a constant, we can allow it to vary over time by

modeling it as a stochastic process. Instead of forcing the volatility coefficient σ to be

a constant, we can allow it to vary as another stochastic process. There, you have a

three-factor model. The pricing will be more complicated and so will be the estimation.

Working with these multi-factor models requires some patience, perseverance, and the
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love for the subject matter. Indeed, it is not for everybody.

• Curve Fitting: On a topic related to model calibration is yield curve fitting. In this

approach, there is no consideration along the time-series dimension. The zero rate

r(τ) of maturity τ is modeled as a parametric function, which is then used to price

all market traded coupon-bearing bonds. On any given day, the parameters in that

parametric function will be chosen so that the pricing errors between the model yields

and the market yields are minimized. This exercise of yield curve fitting is repeated

daily and the model parameters are updated daily as well.

Figure 2 plots the yield curve during the depth of the 2008 crisis. It uses the Svensson

model for curve fitting. The parameters in the Svensson model are first optimized so

that the model can price all of the market-traded bonds on December 11, 2008 with

minimum pricing errors. Using these parameters, the black line is the corresponding

par coupon curve. The blue or purple dots are the market yields for the market-

traded bonds. For each dot, there is a companion red “+”, which is the model yield

for the corresponding bond. In a fast decreasing interest rate environment such as

December 2008, most of the existing bonds are premium bonds. As we discussed

earlier, with an upward sloping term structure, the yields of these bonds are lower

than the corresponding par-coupon yields of the same maturity. That is why most of

the red “+”s are below the par coupon curve. If there are many discount bonds being

traded at the time, then you will see some red “+”s above the par coupon curve.

This curve fitting exercise is useful in connecting the yields of different maturities

through a parametric function of zero rates. For example, there is quite a bit of

overlap in discount rates between a ten-year yield and a ten-year minus one-month

yield. The presence of a parametric function of zero rates acknowledges the overlap

(ten years minus one month) and the pricing difference between these two yields will be

sensitive only to the one-month gap. But the usefulness of a curve fitting exercise stops

at this level. If you would like to use a model to help you with derivatives pricing on

the yield curve (e.g., Bond options, swaptions, caps/floors, etc), a curve-fitting model

will not be helpful at all because it does not take into consideration of how yields vary

over time. For derivatives pricing on the yield curve, you need to use dynamic models.

The usual approach is to use multi-factor versions of CIR or Vasicek models. Affine

models are examples of these multi-factor versions of CIR and Vasicek.
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Figure 2: Treasury Yield Curve on December 11, 2008.
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3 Relative Value Trading with a Term Structure Model

In March 2011, Chifu Huang (a former MIT Sloan Finance professor) came to Prof. Merton’s

class to give a guest lecture. I found his talk to be very informative and the following is

based on one portion of his talk.

• How to Use a Term-Structure Model to Identify Trading Opportunity: Rel-

ative value trading in the fixed income market does not make a judgment on the level

of interest rates or the slope of the curve. It assumes that a few points on the yield

curve are always fair. For example, the time-series data on the 10yr, 2yr, and 1-month

rates can be used to estimate a three-factor term structure model.

Recall that in the Vasicek model, the short rate is the only risk factor (i.e., state

variable). That is why in your Assignment 4, I ask you to estimate the model using

only the 3M Tbill rates. With a three-factor model, we have three risk factors (i.e.,

state variables) and we need three points on the yield curve to help us estimate the

model. Intuitively, the 10yr gives us information about the level of long-term interest

rates; the 2yr together with the 10yr informs us about the slope of the curve; and

the 1-month Tbill rate captures the short-term interest rate (including expectations

on monetary policy in the near term).

Once you have the model estimated by the time-series data (which is a non-trivial

task if you would like to do it properly), this model is going to give you predictions

about the level of interest rates across the entire yield curve. You can then compare

the model price with the market price to judge for yourself whether or not a market

price is cheap or expensive. Once you convince yourself that your model helps you pick

up a trading opportunity, you would structure a trade around it. You can buy cheap

maturities and sell expensive maturities, and, at the same time, hedge your portfolio

so that it is insensitive to the changes of the level or the slope of the yield curve.

The main judgment call is to understand why your model identifies some maturities

as cheap or expensive. If it is due to institutional reasons (which does not show up in

your model but does show up in the data), then you can make judgment as to whether

or not such institutional reasons will dissipate over time (and how fast).

• An Example:

One example was given by Chifu. In August 1998, Russian defaulted on its local

currency debt, and the effect lingered well into September and was later known as

the LTCM crisis. As shown in Figure 3, in September 1998, bond markets rallied in
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Figure 3: Fed Target and Treasury Yields in 1998.

Figure 4: Cheapness and Richness of US 30-Year Swap Rate Based on a Two-Factor Model.
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anticipation of a rate cut. On September 29, the Fed cut the fed funds target rate by

25 bps.

Figure 4 is a slide presented by Chifu in his talk. In September 1998, his two-factor

model picks up a trading opportunity regarding the 30yr bond. According to the

model, the market price for the 30yr bond is cheap relative to the model price. The

deviation between the data and the model was at the range of 10 to 20 bps. The

30-year rate was around 5.5% at that time, implying a modified duration of about 15

years. So a 10 bps price deviation in 30yr would translate to 10 bps × 15 = 150 bps

in bond return. And a 20 bps deviation will translate to 3% in bond return.

So what are the reasons for this cheapening of 30yr? It is because residing over the

30yr region are pension funds and life insurance companies who are either inactive

“portfolio rebalancers” or rate-targeted buyers. As a result, the rally that happened

in the rest of the yield curve didn’t find its way to the 30yr region. There is a lag in

how information (regarding an impending rate cut) gets transmitted to this region. As

you can see from Figure 3 and 4, it was only after the Fed’s rate cut on September 28

when the 30yr yield was brought back in alignment with the rest of the yield curve.
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