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1 Financial Data

Financial markets are places where people trade on their information. Sometimes, in some

corners of the world, people bring their hope and wishes, fear and greed to the markets.

But overall, when all of these noises get canceled out, the financial market is a powerful

information central. No other platform in this world can gather and process information in

a more efficient way. What people bring to the markets might be messy, and the people

themselves might be messy, but the output is simple and elegant: price and trading volume.

The process is an organic one. Like rivers flowing from the mountain to the sea, not

one person can really force the market to go one way or the other for a sustained period

of time. The process is not a flawless one. In the recent 2008-09 financial crises, financial

prices failed to reflect the real information. Central banks around the globe had to resort

to quantitative easings to offer support: cushion the fall and control the flood. But all in

all, financial markets are the best place to gather and collect information about the overall

economy and individual companies.

Financial data are the direct output of this process. One thing I would like you to develop

over the course of this semester is confidence and ease in handling financial data. As a first

step, you should know where to get what kind of data.

• Bloomberg: For most practitioners, a Bloomberg terminal is the first place to access

the real-time information. When I first joined Sloan in 2000, there was just one (or

two) Bloomberg terminal sitting in the basement of E52. In recent years, because of

the creation of the Master of Finance program, we have significantly increased the

number of units at Sloan. All students should take full advantage of this opportunity.

Since its beginning in 1981, Bloomberg data-and-information terminals have evolved

into something that is more complex and powerful than just a data service. They

are used by bankers, traders, and money managers for information gathering, trade
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communication and execution, and pricing and risk analysis for global products in

equities, fixed-income, derivatives, commodities, and foreign exchange. For example,

you can find tools for yield curve analyses, as well as pricing functions for interest rate

swaps and credit-default swaps on Bloomberg. This kind of convenience could also be

worrisome if users are too lazy to do their own price discovery and start to think of the

prices generated by a Bloomberg pricing function to be the real price. Just imagine,

when you are using a Bloomberg function, everyone else is using it as well. Group

think soon prevails.

While there are other data providers such as Thomson Reuters, Bloomberg remains

its dominance in part because of the broad user base of its messaging tool. If your

client is on Bloomberg, then you will have to be on Bloomberg to reach him. This

also creates the situation of “Too Bloomberg to Fail.” On April 17, 2015, before the

opening of the US markets, there was a computer-network outage on Bloomberg. The

blackout, which started shortly after European markets opened, also caused the UK to

postpone a scheduled multibillion buyback of government debt. The £3 billion ($4.5

billion) tender was rescheduled for the afternoon.1

• Datastream: I have to confess that I am not a big fan of Bloomberg terminals. I don’t

trade. The real-time feature is not attractive for me. I don’t have fellow traders or

clients to communicate with. Finally, I don’t trust the pricing function built by others.

But still, for real practitioners, I can certainly see the importance of a Bloomberg

terminal.

I use data provider for teaching and doing research. So when it comes to downloading

data, I like to use Datastream, which offers long time-series data with very broad

coverage. For example, I used Datastream to download time-series data on interest

rate swaps and credit default swaps, which we will use later in the semester. By

contrast, downloading the same amount of time-series data from Bloomberg is painful,

to say the least.

Some of the Sloan machines have Datastream installed. You can open a terminal to

navigate the system. It offers a wealth of products. To download the time-series data,

you can use the Datastream plugin in Excel.

• CRSP: The Center for Research in Security Prices (CRSP) is an impressive collective

effort done by people at Chicago GSB, now the Booth School. When it comes to data

1“Bloomberg Terminals Go Down Globally,” Wall Street Journal, April 17, 2015.
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on US equity returns, CRSP is the gold standard. A lot of effort and care have been

put in by these researchers to clean up the raw data from stock exchanges and properly

calculate returns.2 When I use stock return data, I don’t trust any other sources.

In addition to stock data, CRSP provides US Treasury data and Mutual Fund data.

This is a link to CRSP Manuals and Overviews.

• WRDS and its component databases: The Wharton Research Data Services

(WRDS) was initially developed to support faculty research at Wharton. Today, it

has become an important platform that hosts a wide spectrum of databases, including

CRSP. I’ve applied a class account for us at WRDS. The username is “finmkt” and

you can get the password by emailing me or the TAs. I would encourage you to log on

to the system to take a look. These are some useful databases hosted by WRDS:

– CRSP: equity, treasury, and mutual fund data.

– Compustat: firm-level fundamentals including income statements, balance sheets,

and flow of funds. The most essential data for Corporate Finance and Accounting.

– IBES: historical earnings estimates by analysts, including EPS, revenue, price

target, EBITDA and pre-tax profits. Available on both consensus and detailed

levels. Also includes buy-hold-sell recommendations by analysts.

– Option Metrics: contains data on equity options and equity index options.

– TAQ: high-frequency transaction and quote data for all stocks listed on US Ex-

changes.

– TRACE: transaction-level data of US corporate bonds.

• Prof. Ken French’s Website: Prof. French provides a valuable service to our

community by offering a wide range of portfolios and benchmarks on his website.

We will use these data quite extensively in our next few classes and in your group

assignments.

2 Estimating the Expected Stock Returns

• Computing returns: For a publicly traded firms, let Pt be its stock price at the end

of year t, and Dt be the cash dividend paid out during year t. The year-t realized

2See Chapter 7 of “Capital Ideas” by Perter Bernstein for a detailed account.
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return is,

Rt =
Pt +Dt − Pt−1

Pt−1
=

Pt − Pt−1

Pt−1
+

Dt

Pt−1
,

which is the sum of capital gain and dividend yield.

Calculating returns is in fact not as simple as you would think. Above is a textbook

example, involving only cash dividends. In practice, one has to take care of periodic

firm events including splits, reverse splits, stock dividends, rights offerings, spin offs,

etc. Dealing with these issues is so tedious that you would want to quit Finance right

away. So we are very thankful to CRSP for taking care of all of these firm events and

give us a clean and reliable set of stock return data. If you are the curious type or if

you would like to apply the CRSP service to another market, say the Chinese stock

market (which lacks a professional service such as CRSP), here is a link to CRSP’s

Data Descriptions Guide.

One year, I asked my TA for 15.433 to calculate for me monthly returns of Berkshire

Hathaway (BRK). The numbers he gave me looked suspicious because Warren Buffett is

known to be a great investor, but my TA told me that BRK alpha is close to zero. So

I went over the data myself and found out that there were three months in the 1970s

when the price data were missing. Matlab replaces missing data with zero. So my TA

caused Warren Buffett to bankrupt three times (i.e., in my TA’s spreadsheet, he had

-100% returns in three places in the return column), and yet, Mr. Buffett’s alpha came

out to be close to zero. This is how impressive Mr. Buffett’s performance is. After

this, I never ask any of my TAs to do my calculations for me.

• Estimating the expected return: For any financial instrument, the single most

important number is its expected return. This is what attracts an investor to that

product in the first place. And yet, the expected stock return is the toughest number

to measure in Finance.

Suppose right now we are in year t, and let Rt+1 denote the stock return to be realized

next year. In making our investment decision today, one of the key variables is the

expected return: μ = E (Rt+1) . It is worthwhile to emphasize that μ is a number,

while Rt+1 is a random variable drawn from a distribution with mean μ and standard

deviation σ.

The standard approach in estimating the expected return is to use past returns and
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estimate μ by taking the sample average:

μ̂ =
1

N

N∑
t=1

Rt .

Let’s again use the time-series data on annual stock returns, plotted in Figure 1. In

this example, we have a time-series of 88 realized returns.
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Figure 1: Time-series of annual stock market returns from 1927 through 2015. Returns are
calculated using the CRSP-value weighted index, which includes all stocks traded on the US
exchanges. Source: Prof. Ken French’s website.

One natural question is why can this sample average of past realized returns help us

form an expectation of the future? The answer is the same as before. We are assuming

that historical repeats itself in such a why that each Rt in the past was drawn from

an identical distribution with mean μ and standard deviation σ. Moreover, the draw

is forgetful in the sense that this year’s distribution is independent of past years’

distributions. Again, we are using the assumption that stock returns are independent
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and identically distributed (i.i.d.).

• Standard Error of μ̂: At this point, it is important to emphasize the distinction

between μ and μ̂. Specifically, μ̂ is an estimator for an unknown number μ. The

estimator μ̂ itself is not a number, it is an average of 88 random variables. As a direct

result, μ̂ inherits the noise from the 88 random variables Rt:

var(μ̂) = var

(
1

N

N∑
t=1

Rt

)
=

1

N2

N∑
t=1

var(Rt) =
1

N2
×N × σ2 =

1

N
σ2 .

Notice that the above derivation relies on the i.i.d. assumption. In passing through

the second equal sign, we use the independent assumption: cov(Rt, Rs) = 0 for t �= s.

In passing through the third equal sign, we use the assumption that Rt is identically

distributed with a variance of σ2.

Because of the special role of μ̂ as an estimator, we also refer to its standard deviation

as the standard error of μ̂. To summarize,

s.e.(μ̂) =
std(Rt)√

N
=

σ√
N

.

Naturally, an estimator with smaller standard error gives us more precision. From the

above equation, the level of volatility in the stock market return plays an important

role in determining the noise level of our estimator μ̂. Unfortunately, stock market

returns are known to be very “noisy.” The only way to improve the precision is by

increasing N, the number of observations.

• Using t-stat: For the time-series data of annual stock returns from 1927 through

2014, the sample mean is 12% and the sample standard deviation is 20%. So the

estimate of μ is 12% and that of σ is 20%. We can now calculate the standard error of

this estimator:

20%/
√
88 = 2.13% .

To evaluate how significant an estimate of 12% is in relation to the standard error, we

often use the t-stat of the estimator:

t-stat =
12%

2.13%
= 5.63 .

Effectively, it is a signal-to-noise ratio. The bigger the absolute value of the t-stat, the

more significantly away it is from zero. For the rest of the semester, we will use this
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rule of thumb: a significant estimate is one whose t-stat has an absolute value greater

than 2. In other words, a large value of the estimate itself is not that meaningful. It is

only after you scale it with its noise level (i.e., standard error), the measure becomes

useful. And our cutoff value is two.3

For many emerging markets, the sample averages of their stock returns might be large

compared to the US number. But such markets are typically more volatile than the US

markets (larger σ). Moreover, they are also younger (smaller N). Factoring in these

observations, the t-stat’s of μ̂ for these emerging markets are typically much smaller

5.63. For some of the countries (e.g., China), the t-stat’s of their μ̂ might not even pass

the threshold value of 2, indicating that, statistically speaking, the expected return is

not significantly different from zero!

In fact, the current example with a t-stat of 5.63 is as good as it gets when it comes

to estimating the expected stock return μ. Nevertheless, the corresponding 95% con-

fidence interval is not that impressive:

[12%− 1.96× 2.13%, 12% + 1.96× 2.13%] = [7.8%, 16.2%] .

In other words, with 88 years of data and for one of the most stable stock markets in

the world, we can only get to this range of 95% confidence interval. That’s why I said

earlier that the expected stock return is the toughest number to estimate in Finance.

As we can see from our analysis, the main reason is the volatility in the stock market.

• Rt and μ̂ on the same plot: Just to make a more graphical display of the connection

between μ̂ and Rt, I plotted in Figure 2 both of their distributions.

Recall that

μ̂ =
1

N

N∑
t=1

Rt .

As a result, the estimator μ̂ is closely connected to stock returns. The signal we really

really would like to extract from the realizations of Rt is its mean, i.e., the expected

return return. Unfortunately, like everything else in life, it comes as a packaged deal:

to get its mean, you also have to take its variance. So the blue line plotted in Figure 2

3I’ll be happy to explain why the cutoff value is two. But I feel that the explanation will distract us from
the Finance content. For those who are interested, the key intuition is that μ̂ is normally distributed (because
of the central limit theorem) with a standard deviation of σ/

√
N . A cutoff value of 1.96 corresponds to a

double-sided test of the null hypothesis that μ = 0 with the significance level of 5%: normcdf(-1.96)*2=0.05.
Instead of carrying 1.96, let’s just round it to 2.
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informs you of the distribution of this packaged deal. Specifically, the blue line is the

pdf of a normal distribution with mean 12% and standard deviation of 20%.
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Figure 2: The probability density functions ofRt and μ̂ and the 95-percent confidence interval
for the estimator μ̂.

Plotted against the blue line, is the distribution of the extracted signal μ̂. As you

can see, with 88 data points, we are able to shrink the noise in the raw data quite

significantly. More data, more precision. The exact rate of shrinkage is
√
N . In this

plot, I use N = 88.

In addition to plotting the pdf of μ̂, I also plotted the 95% confidence interval. For

a standard normal distribution, the critical value of a two-sided 5% tail is 1.96. The

left and right cutoff values for our current example are 0.12− 1.96× 0.0213 and 0.12+

1.96 × 0.0213. So the two yellow-shaded areas add up to 5% probability, while the

middle unshaded area in the distribution has a total probability of 95%.

In doing a statistical test, the main question we are asking is the following. The

estimator is noisy (the standard error is 2.13%). Given this noise level, is the estimated

expected return (12%) significantly away from zero? Of course, 12% is different from
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zero. Don’t be silly. But the question is more about a “fuzzy” 12% like the red

distribution in the plot. The red line spells out the level of noise for us. We can now

move to the left and reach the cutoff value of the 95% confidence interval and see

whether or not this value is still away from zero. Doing a 95% confidence interval is

cumbersome. Instead, we calculate the t-stat of the estimator: 12%/2.13% and see

how far away it is from 1.96. It has the same effect, but the procedure is simpler. For

this class, let’s make it even simpler by rounding 1.96 to 2.

• Why so much emphasis on statistics? As you can see, I’ve allocated a significant

amount of time on estimation, standard error and t-stat and we’ve gone through the

derivations in quite some details. By doing so, I would like to impress upon you the

Statistical foundation of the tools adopted by people in Finance.

Among the first set of numbers reported in an investment prospectus are the past

realized returns of a portfolio manager. There is no mention at all about how noisy

these numbers are. Implicitly, that is why a long track record is well respected in the

industry. Only when you have a sufficiently long sample, these sample averages become

meaningful. Otherwise, they are as good as noise.

Going forward, we will be working with a variety of estimation results, e.g., regression.

I will not ask you to calculate the standard error of a regression coefficient. That, will

be too much Statistics in a Finance class. Nevertheless, I would like you to always

keep this in mind: as long as you are working with financial data, the numbers you

estimate from the data are contaminated by the randomness and noise that is inherent

in financial data. Do not treat them as numbers. Treat them as estimators with

standard errors and t-stats.

3 Estimating Alpha and Beta

• The risk that matters: So far, we’ve focused on one time series and it turns out to

be a very important risk factor. According to the CAPM, investors are only rewarded

for bearing the systematic risk. Any risk that is uncorrelated with this risk should not

be rewarded, because it can be diversified away. We are going to use the US aggregate

market as a proxy for the systematic risk in the CAPM and take the CAPM model to

the data.

As a starter, let’s give it a unique symbol: RM . Moreover, as it is the convention in

this area, alpha’s and beta’s are estimated using monthly stock returns. So let me
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Figure 3: Time-Series of monthly stock returns from 1927 through 2011. Returns are cal-
culated using the CRSP-value weighted index, which includes all stocks traded on the US
exchanges. Source: Prof. Ken French’s Website.

plot this important time-series using monthly returns in Figure 3, so that you know

that the data look like at this frequency. Compared with the annual frequency, the

fluctuation is at a smaller range. For this market, the annual volatility is around 20%,

while the monthly volatility is around 5.46%. Note that 20%/
√
12 = 5.77%, which is

a pretty good approximation if you don’t remember the monthly number.

• The CAPM: Before we start to use the model quite extensively, let me summarize

the key ingredients of the CAPM here.

– The market risk premium: defined as the expected return of the market portfolio

RM in excess of the riskfree rate rf : E(RM)− rf . So far, at an annualized level,

our estimate for E(RM) is around 12% and the riskfree rate is on average 4%,

making the market risk premium to be around 8%.

– Beta: The risk of an individual stock, say GE, is measured not by its own volatility,
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but by its exposure to the market risk:

βGE =
cov

(
RGE, RM

)
var (RM)

– The pricing equation: The reward is proportional to risk:

E(RGE)− rf = βGE ×
(
E(RM)− rf

)
(1)

• Running regression to estimate the CAPM beta: Let RM
t be the month-t return

of the market portfolio and let RGE be the month-t return of GE, and we run the

following regression to estimate the CAPM beta:

RGE
t − rf = α + β

(
RM

t − rf
)
+ εt . (2)

In terms of data structure, the above regression involves two time-series. In an Excel

spreadsheet, they show up as two columns, one for RGE and the other for RM . There

is one more column, which is not explicitly given and usually you don’t need to use

it. It is the regression residual, εt. So there are three random variables involved RGM ,

RM , and ε, and two numbers to be estimated: α and β.

This regression turns out to be a very important one in Finance, especially for under-

standing risk and returns in the equity market. So let’s spend some time on it. First

all of, this regression puts RM in a unique position. All other stocks and portfolios of

stocks will show up on the left hand side as the dependent variable, while RM always

sits on the right hand side as the independent variable. This is at the heart of the Bill

Sharpe’s insight: in the CAPM world, there is one risk that really matters (RM), and

everything else will be a reference to this unique portfolio. Second, the relation in the

CAPM world is linear, and we are running a linear regression in agreement with that.

Third, the regression coefficient β is indeed the CAPM beta. This greatly simplifies

the estimation process. Instead of doing cov(RGE , RM)/var(RM), we can simply run

a regression to estimate β. Most importantly, the standard error of β is given out for

free as part of the regression output. Otherwise, you will be scratching your head to

figure out how to calculate the standard error, because, so far, I’ve only taught you

how to calculate the standard error of μ̂.

• Running regression to estimate the CAPM alpha: By running the regression,

you also get an estimate of α, which does not seem to be part of the CAPM. But in
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fact, it is at the heart of the pricing relationship. Let’s re-arrange the regression in

Equation (2) to get:

α = RGE
t − rf − β

(
RM

t − rf
)
− εt . (3)

Now let’s take expectations on both sides to get:

α = E
(
RGE

t − rf
)
− β E

(
RM

t − rf
)
− E(εt) .

And what’s E(εt)? By construction, the regression residual, i.e., the time-series of εt

always has zero mean. So we now have

α = E
(
RGE

t − rf
)
− β E

(
RM

t − rf
)
.

So the CAPM pricing formula in Equation (1) is exactly as α = 0. Isn’t that neat?

Now the test of the CAPM is the same as testing whether or not α is zero. Remember

how I kept emphasizing that any estimator will always inherit the noise/randomness

in the data? Applying this lesson on the estimate for α, we need to figure out its

standard error. Luckily, this is given, again for free, as part of the regression output.

Otherwise, what would you do?4 Armed with the t-stat for α, we can now easily test

whether or not α is statistically significant.

Now you can appreciate why we keep including the clumsy rf in this regression. Its

presence does not interfere too much with our estimate for β, because the volatility of

rf is much small than that of stock returns. But by dragging rf along in this regression,

we get α! In other words, by running this regression, not only can we assess the risk

exposure of a stock, but also its “abnormal” return relative to the CAPM benchmark.

• CAPM dead or alive: If we can create a lot of portfolios whose α’s are significantly

different from zero, then the CAPM, as least its version in Equation (1) will be in

trouble. This is what happened to the CAPM in the 1990s, when academic researchers

started to construct trading strategies that will give us positive alpha’s. The most

famous examples are the size and value portfolios in Fama and French (1992) and the

momentum portfolios in Jegadeesh and Titman (1993). At the height of this research

activities, some people even write papers with the title “The CAPM is Dead,” which,

in my opinion, is certainly an exaggeration because the CAPM is more than just

Equation (1).

4In fact, α is like μ for the time-series of RGE
t − rf − β

(
RM

t − rf
)
. So a good approximation for the

standard error of α is std(εt)/sqrt(N), where ε is the regression residual.
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In fact, when Bill Sharpe was interviewed in 1998, he was asked exactly this question,

“Some people proclaim that the CAPM is dead. What do you think?” He responded

by saying that the insight of the CAPM is more than just the equation. Instead, the

true insight about the CAPM is the risk that really matters:

“The fundamental idea remains that there’s no reason to expect reward just

for bearing risk. Otherwise, you’d make a lot of money in Las Vegas. If

there’s reward for risk, it’s got to be special. There’s got to be some economics

behind it or else the world is a very crazy place. I don’t think differently about

those basic ideas at all.” – Bill Sharpe, 1988, Dow Jones Asset Manager

• Running regression to get R-squared: One last cool thing about running this

regression is it gives us the R-squared of the regression. Going back to the regression

in Equation 2, we see that it is a regression that links two random variables RGE and

RM . In an Excel spreadsheet, they show up as two columns. After the regression, we

get a third random variable ε, which is the residual of the regression. If you like, you

can back it out as a column in the Excel spreadsheet by,

εt = RGE
t − rf − α− β

(
RM

t − rf
)
.

As you might know, by construction, the residual ε has mean zero and is uncorrelated

with the independent variable: cov(RM
t , εt) = 0.

Effectively, this regression decomposes RGE into two random components: the first

one is associated with the market portfolio through the term β RM , and the other

is the regression residual ε. This decomposition turns out to be very meaningful.

In the CAPM language, the first term is the systematic component and the second

is idiosyncratic component. And the total variance of RGE is the sum of these two

components:

var(RGE) = β2 var(RM) + var(ε) .

The R-squared gives us the ratio of how much of the variance in RGE comes from the

systematic component:

R-squared =
β2 var(RM)

var(RGE)
,

and 1-R-squared gives us the ratio of how much of the variance in RGE comes from
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the idiosyncratic component:

1− R-squared =
var(ε)

var(RGE)
.

R-squared are the most useful in telling us how important a risk factor is. For example,

in the above regression, RM is used as a risk factor in explaining the variation in a stock

or a stock portfolio like RGE. A high R-squared indicates that the risk factor is very

important in explaining the variation. For example, take any actively managed equity

mutual fund returns and regress it on RM , the typical R-squared is over 90%, with

some funds very close to 98%. Later on, we will develop other risk factors such size,

value, and momentum. Out of all the risk factors out there, RM remains to be the most

important risk factor, second to none and by a wide margin. From this perspective, if

there is risk factor that you should be paying attention to, it is the market portfolio

RM .

• Why so much emphasis on this regression? As you can see, I’ve spent quite

some time focusing on just one regression. If before learning about this regression, the

CAPM concepts seem vague and inaccessible, they should come alive to you by now.

At least for myself, my understanding of the CAPM enhanced a great deal after having

to teach students about this regression.
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Appendices

A On Estimating the Expected Return

• t-stat and Sharpe ratio: You might notice that there is a connection between t-stat

and Sharpe ratio. To make things more clear, let’s assume that we are estimating the

expected excess return. For this, we use a time-series of excess stock returns: Rt − rf ,

where rf is the riskfree rate. For our current example, let’s assume that the riskfree

rate is a constant.

Let avg(R− rf) denote the sample mean of this time-series, and std(R) be the sample

standard deviation. Then the t-stat of the estimator for the expected excess return is

t-stat =
avg(R− rf)

std(R)/
√
N

=
avg(R− rf)

std(R)
×

√
N = Sharpe Ratio×

√
N .

So if you go to an investment meeting, where t-stat’s are usually not reported, you can

use the reported Sharpe ratio to back out the t-stat. Moreover, if the Sharpe ratios of

a wide range of products are reported, all with the same number of observations (N),

then you know that the product with the highest Sharpe ratio also gives you the most

significant (statistical speaking) expected excess return.

• Estimating μ at higher frequencies: Since the standard error of μ̂ depends on the

number of observations (N), why don’t we use the return data at a higher frequency?

Well, it turns out that it doesn’t really work. When it comes to the precision of μ̂,

it is the length of the time-series that counts, not the number of observations. So

chopping the time-series into finer intervals does not work. By contrast, when it comes

to estimating the volatility of stock returns, this approach of chopping data into finer

frequency does work and is widely used.

Here is why for the first moment (i.e., mean), chopping does not work. Using N years of

time-series of annual return data, we calculate the sample mean and sample standard

deviation and use avg(R) and std(R) to denote them. So the t-stat at the annual

frequency is

t-stat =
avg(R)

std(R)/
√
N

=
avg(R)

std(R)
×

√
N

Now let’s do things in a monthly frequency. The total number of observation in-

creases by a factor of 12. As a pretty good approximation, moving from the annual to
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monthly frequency, the sample mean becomes avg(R)/12 and the sample standard de-

viation becomes std(R)/
√
12. (Use log-returns and under the random walk model, this

approximation becomes precise. We will re-visit this when we cover the Black-Scholes

model.) So the t-stat at the monthly frequency is

t-stat =
avg(R)/12

std(R)/
√
12

×
√
N × 12 =

avg(R)

std(R)
×

√
N .

• Other ways to estimate μ: Since μ plays such a uniquely important role in invest-

ments, you can rest assured that there are countless efforts in estimating/predicting

this number. One student told me that in an interview, he was asked to design a deriva-

tive whose value would depend on μ. My answer: it is not possible, because of the

risk-neutral pricing (we will cover this later in the semester). There are also numerous

surveys soliciting predictions about the markets from investors and economists. Well,

when it comes to predicting the stock market, these survey data do not work very well

(we will cover this topic later in the semester).

Prof. Fama and French also had this interesting idea of estimating the expected return

using dividend and earnings growth rates, which are much less noisy than stock returns.

There is, of course, a pricing model that links stock prices to dividend or earnings, like

the Gordon growth model you see in 15.415 or 15.402.

B OLS Regression

B.1 Introduction

In Finance, we run regressions left and right. That is, very often. Because of the availability

of canned software routines, we have the luxury of not having to deal with the process that

happens in the background. This is a pity, because the process itself is actually informative.

So let me write this little note to add to the intuition behind an OLS regression. It is not

as formal as what you will get from an Econometrics class, but adequate.

Code 1: My OLS Regression Code

function [out,R2]=Reg_OLS(Y,X)

A=[ones(length(Y),1) X];

b=inv(A’*A)*(A’*Y);

16



Eps=Y-A*b;

SE=sqrt(diag(inv(A’*A)*var(Eps)));

out=[b’; SE’; (b./SE)’];

R2=1-var(Eps)/var(Y);

% use this if need adjusted R2: adj_R2=R2−(1−R2)∗size(X,2)/(size(X
,1)−size(X,2)−1);

Inserted above is my Matlab code for OLS regression. Throughout the semester, I use

this little program to run regressions for all of the tables and figures in the lecture slides and

notes. The inputs are the regressand Y and the regressor X. If these names are confusing

(they are to me), then let’s call them dependent variable Y and independent variable X.

Or even simpler, left-hand side and right-hand side variables. The Y variable is always

one-dimensional: N × 1, where N is the number of total observations. The X variable is of

dimension N×k, where k is the number of independent variables (or explanatory variables).

For the CAPM regression in this class:

Ri
t − rf = α + β

(
RM

t − rf
)
+ εit ,

I can feed the program with Ri
t − rf as Yt and RM

t − rf as Xt and the program will give me

the regression output: estimate, standard error, t-stat, and R-squared. As you can see, the

matrix operation makes the formula quite simple, especially when we have more than one

explanatory variable. For example, as we expand the CAPM setting to the Fama-French

three-factor model, we will have three explanatory variables (market, size, and value).

B.2 A Concrete Example

One limitation of the matrix operation is that it is not very transparent. So let’s work with

an example with just one explanatory variable. To sharpen our focus, let me further assume

that both Y and X have zero mean. This way, we don’t have to deal with α, and can focus

only on β:

Yt = β Xt + εt ,

• The Regression Coefficient β: In running a regression, the mathematical program

we are trying to solve is in fact a linear prediction problem. The goal is to minimize

the prediction error:

min
β

∑
t

(Yt − β Xt)
2
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If you are good at solving optimization problems, it is pretty easy to see that the first

order condition of the above optimization problem gives us the solution:

β̂ =

∑
t YtXt∑
t X

2
t

.

Recall that X and Y are zero mean (for simplicity). So

1

N

∑
t

YtXt = cov (Yt, Xt) ;
1

N

∑
t

X2
t = var (Xt) .

Now you can see why we can recover the CAPM β by running a regression.

• The Standard Error: Note that I’ve put a hat on β to emphasize that this is an

estimator, inheriting the noise from the data. So it is a random variable itself (just

like μ̂). Now let’s calculate its standard error, which is the square-root of

var
(
β̂
)
= var

(∑
t YtXt∑
tX

2
t

)
=

var (εt)∑
tX

2
t

,

where I’ve abused the notation a bit. To be more precise, I should use var
(
β̂ |X

)
. In

other words, I am doing the calculation conditioning on X and taking advantage of

the result that the residual εt is by construction independent of Xt.

Using σε for the variance of the residual and σX for the variance of X (and remember

that both Y and X have zero mean), we can further simplify the standard error to

var
(
β̂
)
=

σ2
ε

N σ2
X

; s.e.(β̂) =
σε√
N σX

.

Going back to the intuition we’ve gained by working with μ̂, we know that the longer

the time-series (larger N), the more precise the estimator. Here we have the same

result: with more observations (larger N), the standard error for β̂ is smaller. Also

interesting is the fact that the residual variance σ2
ε has a direct impact on the precision

of β̂. Recall that the noisier the stock market (higher σR), the less precise the estimator

μ̂. Here it is the ratio of σε/σX that matters: for a given level of σX , the noisier the

residual (the unexplained component), the less precise the regression coefficient β.

• The More General Case: In making the example concrete, we’ve assumed that X

and Y are zero mean random variables. Taking out this assumption, we run the more
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general regression of

Yt = α + β Xt + εt .

The two important results we’ve obtained so far remain true:

β̂ =
cov(Yt, Xt)

var(Xt)
; s.e.(β̂) =

σε√
N σX

.

Moreover, you will find the quite intuitive result of

α̂ = E(Yt)− β̂E(Xt) ; s.e.(α̂) =

√
σ2
ε

N
+

(
s.e.(β̂)E(Xt)

)2

.

From this solution, you can see that α̂ is very similar to the mean estimator μ̂. If

the explanatory variable X is zero mean, then the estimation for α will not involve β.

In this case, α̂ is indeed the mean estimator for the residual εt. Applying this to the

CAPM setting, where σε is the volatility of the idiosyncratic risk taken by a portfolio

manager, you can see how the precision of his α is linked to his level of idiosyncratic

risk. Having to estimate his β adds a bit noise to the precision of α, but it is the

amount of the idiosyncratic risk that is the main driver for s.e.(α̂). So if a manager

achieves his α through exposing his portfolio to high idiosyncratic risk, his signal to

noise ratio will be low and the precision of his α will also be low.

• R-squared and its relation to t-stat: The R-squared of a regression provides

additional information. Going back to the CAPM regression, we notice that two stocks

with the same β could have very different R-squared’s. You can dial up the idiosyncratic

risk to decrease the R-squared while keeping the same β. But it turns out that there

is a one-to-one relation between R-squared and t-stat:

R-squared =
β2 σ2

X

σ2
Y

and

(t-stat)2 =

(
β̂

s.e.(β)

)2

=
N β2 σ2

X

σ2
ε

Comparing the two and using the fact that

R2 =
β2σ2

X

σ2
Y

; 1−R2 =
σ2
ε

σ2
Y
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we have

(t-stat)2 =
N R2 σ2

Y

σ2
ε

=
N R2

1− R2
,

where, to make the math look pretty, I’ve used R2 for R-squared. So if I give you two

stocks with the same t-stat for β (using the same number of observations N), their

R-squared must be the same.

• One final note: This note is not really necessary. It addresses the issue regarding

unbiasness in small sample and consistency in large sample. I am writing it simply for

those who notice that sometimes we scale the number of observations by N , sometime

N − 1, and sometimes N − 2.

Suppose you are given N observations of a random variable Z and you are asked to

estimate its variance. You must have been taught in one of your earlier statistics classes

that the unbiased estimator is

1

N − 1

N∑
t=1

(
Zt − Z̄

)2

Notice the term N−1 (not the usual N) is used as the scaling factor. Although we have

a total of N observations, the degree of freedom is only N − 1 because by having to

estimate the mean of Z (i.e., Z̄), we use up one degree of freedom. You can go through

the very tedious algebra (and I am sure you were asked to do so in your Statistics

class) to convince yourself that this is indeed true.

I have to confess that I am not super crazy about making this adjustment from N to

N − 1 to get an unbiased estimator. For large N , the difference between N − 1 and N

is negligible. If we take N to infinity, then adding or subtracting a finite number from

it will not matter. So I very much prefer to use

1

N

N∑
t=1

(
Zt − Z̄

)2

as an estimator. In the language of Econometrics, this is a consistent estimator: it

converges to the true value when the sample size N grows to infinity.

By the way, to do this adjustment for OLS regression, the degree of freedom is N − 2

for the case of one explanatory variable. We are losing two degrees of freedom because

in order to estimate the variance of the residual (σε) we need to first estimate the
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intercept and the slope coefficient. So the standard error for β̂ would be

s.e. (β) =
σ2
ε

Nσ2
X

=

∑
t ε

2
t/(N − 2)

Nσ2
X

On the other hand, this bias adjustment is not done in calculating the R-squared.

Consequently, the relationship between t-stat and R-squared would be

(t-stat)2 =
(N − 2)R2

1−R2
.

C Exercises

I will add more if possible. I also welcome suggestions from students.

1. In a paper written by Prof. Jiang Wang and his co-authors, it was reported that for

the Chinese market from July 1997 to December 2013, the average excess return of the

market portfolio is 0.60% per month with a t-stat of 0.97. What is the monthly stock

market volatility in China during this sample period? Compare it with the US market

volatility.

2. Can two stocks have the same β but different R-squared? If so, construct an example

for me? In which way are these two stocks similar? In which ways are they different?

3. Can two stocks have the same t-stat of β but different R-squared?

4. Suppose that there are many different companies whose stocks have the same beta,

say 1. Can you form a portfolio to diversify the risk to get a lower beta?

5. Suppose you have a put option on the S&P 500 index. Do you think it has a non-zero

beta? If so, it is positive or negative?

D Matlab Code

Code 2: Plot the Distribution of Rt and μ̂

Mu=0.12; Sigma=0.20; N=88;

SE=Sigma/sqrt(88);
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R_Grid=-0.40:0.0005:0.50;

PDF_R=normpdf(R_Grid,Mu,Sigma);

PDF_MuHat=normpdf(R_Grid,Mu,SE);

figure(1);clf;

plot(R_Grid*100,PDF_R,’b-’,R_Grid*100,PDF_MuHat,’r-’);

text(0.21*100,16,’\bf pdf of $$\hat{\mu}$$’,’Interpreter’,’Latex’,’FontSize’

,13)

ylabel(’\bf Probability Density’);

xlabel(’\bf Return (%)’);

text(-0.2*100,3.0,’\bf pdf of $$R_t$$’,’Interpreter’,’Latex’,’FontSize’,13);

text(-0.33*100,16,’\bf $$\hat\mu = \frac{1}{N} \sum_{t=1}^N R_t$$’,’

Interpreter’,’Latex’,’FontSize’,13);

title(’\bf The 95-Percent Confidence Interval’);

PDF_R=normpdf(R_Grid,Mu,Sigma);

PDF_MuHat=normpdf(R_Grid,Mu,SE);

Conf95_Left=Mu-1.96*SE;

Conf95_Right=Mu+1.96*SE;

Left=(Conf95_Left:-0.001:Mu-4*SE);

Right=(Conf95_Right:0.001:Mu+4*SE);

pdf_Left=normpdf(Left,Mu,SE);

pdf_Right=normpdf(Right,Mu,SE);

hold on;

fill([Left fliplr(Left)]*100,[zeros(1,length(pdf_Left)) fliplr(pdf_Left)],’y

’);

fill([Right fliplr(Right)]*100,[zeros(1,length(pdf_Right)) fliplr(pdf_Right)

],’y’);

hold off;
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