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Outline

The importance of measuring market volatility:
▶ Portfolio managers performing optimal asset allocation.
▶ Risk managers assessing portfolio risk (e.g., Value-at-Risk).
▶ Derivatives investors trading non-linear contracts.

Volatility σ can be better measured than expected returns µ:
▶ Backward looking: estimate volatility using historical data.
▶ Forward looking: from derivatives prices.

Estimating volatility using financial time series:
▶ SMA: simple moving average model (traditional approach).
▶ EWMA: exponentially weighted moving average model (RiskMetrics).
▶ ARCH and GARCH models (Nobel Prize).

EWMA for covariances and correlations.
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Daily Returns on the S&P 500 Index

1970 1980 1990 2000 2010 2020
-25

-20

-15

-10

-5

0

5

10

15
Daily SPX Returns (%)

Financial Markets, Fall 2020, SAIF Class 11: Time-Varying Volatility Jun Pan 3 / 23



The Simple Moving Average Model

Unlike expected returns, volatility can be measured with better precision using
higher frequency data. So let’s use daily data.
Some have gone into higher frequency by using intra-day data. But micro-structure
noises such as bid/ask bounce start to dominate in the intra-day domain. So let’s
not go there in this class.
Suppose in month t, there are N trading days, with Rn denoting n-th day return.
The simple moving average (SMA) model:

σ =

√√√√ 1

N

N∑
n=1

(Rn)
2

To get an annualized number: σ ×
√
252. (252 trading days per year).
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The Monthly SMA Volatility Estimates
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The Precision of the SMA Estimates
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Time-Varying Volatility and Business Cycles
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SMA Volatility and Option-Implied Volatility
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Exponentially Weighted Moving Average Model

The simple moving average (SMA) model fixes a time window and applies equal
weight to all observations within the window.
In the exponentially weighted moving average (EWMA) model, the more recent
observation carries a higher weight in the volatility estimate.
The relative weight is controlled by a decay factor λ.
Suppose Rt is today’s realized return, Rt−1 is yesterday’s, and Rt−n is the daily
return realized n days ago. Volatility estimate σ:

Equally Weighted Exponentially Weighted√√√√ 1

N

N−1∑
n=0

(Rt−n)
2

√√√√(1− λ)

N−1∑
n=0

λn (Rt−n)
2
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EWMA Weighting Scheme
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SMA and EWMA Estimates after a Crash

Source: J.P.Morgan/Reuters RiskMetrics — Technical Document, 1996
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Computing EWMA recursively

One attractive feature of the exponentially weighted estimator is that it can be
computed recursively.
Let σt be the EWMA volatility estimator using all the information available on day
t− 1 for the purpose of forecasting the volatility on day t.
Moving one day forward, it’s now day t. After the day is over, we observe the
realized return Rt.
We now need to update our EWMA volatility estimator σt+1 using the newly arrived
information (i.e. Rt). It turns out that we can do so by

σt+1
2 = λσ2

t + (1− λ)Rt
2
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Decay factor, Strong or Weak?

A strong decay factor (that is, small λ) underweights the far away events more
strongly, making the effective sample size smaller.
A strong decay factor improves on the timeliness of the volatility estimate, but that
estimate could be noisy and suffers in precision.
On the other hand, a weak decay factor improves on the smoothness and precision,
but that estimate could be sluggish and slow in response to changing market
conditions.
So there is a tradeoff.
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Fast, Medium, and Slow Decay
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ARCH and GARCH models

The ARCH model, autoregressive conditional heteroskedasticity, was proposed by
Professor Robert Engle in 1982. The GARCH model is a generalized version of
ARCH.
ARCH and GARCH are statistical models that capture the time-varying volatility:

σ2
t+1 = a0 + a1R

2
t + a2 σ

2
t

As you can see, it is very similar to the EWMA model. In fact, if we set a0 = 0,
a2 = λ, and a1 = 1− λ, we are doing the EWMA model.
This model has three parameters while the EWMA has only one. So it offers more
flexibility (e.g., allows for mean reversion and better captures volatility clustering).
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The Nobel-Prize Winning Model
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EWMA Covariances and Correlations

Our goal is to create the variance-covariance matrix for the key risk factors
influencing our portfolio.
For the moment, let’s suppose that there are only two risk factors affecting our
portfolio.
Let RA

t and RB
t be the day-t realized returns of these two risk factors. The

covariance between A and B:

covt+1 = λ covt + (1− λ)RA
t ×RB

t

And their correlation:
corrt+1 =

covt+1

σA
t+1σ

B
t+1

,

where σA
t+1 and σB

t+1 are the EWMA volatility estimates.

Financial Markets, Fall 2020, SAIF Class 11: Time-Varying Volatility Jun Pan 17 / 23



Negative Correlation between RM and ∆V IX
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Correlation between SPX and SSE

1995 2000 2005 2010 2015 2020
-20

-10

0

10

20

30

40

co
rr

el
at

io
n 

(%
)

EWMA Correlation of SPX and SSE using 5-Day Returns
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From Volatility Estimates to VaR

Financial Markets, Fall 2020, SAIF Class 11: Time-Varying Volatility Jun Pan 20 / 23



The Main Takeaways
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