The SOE Premium and Government Support in China's Credit Market

Jun Pan

Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiao Tong University

Ken Singleton Celebration, April 21, 2023

Joint work with Zhe Geng from Fudan University

Motivations

- The single most important divide in China's economy:
 - State-owned enterprises (SOE) versus non-SOEs.
 - SOEs: less efficient but more privileged.
 - ► Allocational inefficiency drags on aggregate growth: Hsieh and Klenow (2009):
- The extent of the allocational disparity and divide:
 - Widely cited but not well documented.
 - ▶ Interconnected debt financial channels and the opacity of bank loans.
 - ► Changing government policies further influence the relative credit allocation.
- Empirical evidences on the relative credit allocation: critical for discussions on the real impact of the credit misallocation and the ensuing welfare losses.

This Paper

- The first comprehensive evidence on the relative credit allocation.
 - The SOE premium: difference in credit spreads between non-SOEs and SOEs.
 - ▶ Unprecedented explosion of the SOE premium amid the 2018Q2 liquidity crisis.
- A structural default model unifying **credit risk**, **liquidity**, and **bailout**.
 - ▶ The presence of government bailout divides the pricing of SOEs and non-SOEs.
 - ▶ Interacting bailout with the liquidity-driven default of He and Xiong (2012): Explosive SOE premium amid liquidity deterioration.
 - Diverging contents of price discovery: SOEs on bailout and non-SOEs on credit.
- The real impact of credit misallocation:
 - ▶ Post 2018Q2, severe performance deteriorations of non-SOEs relative to SOEs.
 - ▶ Reversing the long-standing trend of non-SOEs outperforming SOEs.

Background on China's Credit Market

- Totaling \$4.5 Trillion by 2020, second only to the U.S.
- Two important shocks: March 4, 2014 and April 27, 2018.

The SOE Premium

$$\mathsf{CreditSpread}_{i,t} = a + \mathbf{b} \, \mathsf{NSOE}_{i,t} + c \, \mathsf{Rating}_{i,t} + \sum_k \mathsf{Controls}_{i,t}^k + \epsilon_{i,t}$$

Measuring the SOE Premium

Quarterly panel regressions with quarter and industry fixed effects:

$$\mathsf{CreditSpread}_{i,t} = a + \mathbf{b} \, \mathsf{NSOE}_{i,t} + c \, \mathsf{Rating}_{i,t} + \sum_k \mathsf{Controls}_{i,t}^k + \epsilon_{i,t}$$

		Listed Firm	าร	Unlisted Firms					
	Phase I	Phase II	Phase III	Phase I	Phase II	Phase III			
NSOE	0.20*** [2.97]	0.27*** [4.28]	1.13*** [7.76]	0.25*** [5.65]	0.91*** [15.25]	1.81*** [17.87]			
Rating	0.52*** [6.45]	0.53*** [10.62]	1.19*** [5.12]	0.49*** [14.85]	0.47*** [17.52]	0.48*** [14.83]			
Obs	4,292	9,967	5,338	16,179	32,240	15,833			
$\operatorname{Adj} R^2$	0.546	0.455	0.376	0.561	0.508	0.491			

Behind the Exploding SOE Premium

- The 2018 New Regulations on Asset Management:
 - Designed to rein in the shadow banking activities by asset managers in China.
 - * Forces asset managers to value safety over yield.
 - ★ Sharply reduces the attractiveness of the asset-management products.
 - * Severely shrinks financing and re-financing via shadow banking.
 - ▶ Inadvertently triggers a liquidity crisis in the credit market:
 - * Worsened liquidity, reduced credit access, and unprecedented defaults.
- Our explanation: SOEs more resilient due to government support.
 - ▶ A flight-to-safety with Chinese characteristics: seeking safety in SOEs.
- Alternative explanation: non-SOEs weaker in fundamental health.
 - ▶ Non-SOEs over-borrowed and over-expanded while SOEs delevered before 2018.

The Model: Add Bailout to He and Xiong (2012)

 \bullet The firm's unlevered asset value V_t follows, under the risk-neutral measure,

$$dV_t = (r - \delta) V_t dt + \sigma V_t dZ_t$$

• Bond valuation $d(V_t, \tau)$, liquidity shocks governed by Poisson arrival with intensity ξ ,

$$r d(V_t, \tau) = \frac{C}{m} - \frac{\xi}{k} k d(V_t, \tau) - \frac{\partial d(V_t, \tau)}{\partial \tau} + (r - \delta) V_t \frac{\partial d(V_t, \tau)}{\partial V} + \frac{1}{2} \sigma^2 V_t^2 \frac{\partial^2 d(V_t, \tau)}{\partial V^2}$$

ullet Conditioning on default, the bond is bailed out with probability π_g :

$$d(V_B, \tau, \pi_g; V_B) = \frac{\alpha V_B}{m} (1 - \pi_g) + \frac{P}{m} \pi_g$$

 \bullet Equity valuation E, with the rollover gain/loss borne by the equity holders,

$$rE = (r - \delta)V_t E_V + \frac{1}{2}\sigma^2 V_t^2 E_{VV} + \delta V_t - (1 - \pi)C + \frac{d(V_t, m, \pi_g)}{m} - \frac{P}{m}$$

• The endogenous default boundary V_B : default occurs when $E(V_B) = 0$.

The SOE Premium

Credit Spreads

The SOE Premium

Model-Implied Default Measures (DM)

• Inverse of one-year distance-to-default:

$$\mathsf{DM}_t = \mathsf{DD}_t^{-1}$$

Our Model:

$$\mathsf{DD}^{\mathsf{Unified}}_t = rac{\ln(V_t/V_B)}{\sigma_A}$$

Merton:

$$\mathsf{DD}_t^{\mathsf{Merton}} = \frac{\left(\mu - \frac{1}{2}\sigma_A^2\right) + \ln\left(V_t/K\right)}{\sigma_A}$$

Merton's One-Year Distance-to-Default

Quarterly Estimation of the Model-Implied Default Measures

- The estimation of DM is driven by equity-market and balance-sheet information.
- **DM**^{Merton} focuses on the fundamental credit quality.
 - ► Each quarter, the unlevered asset value and volatility are estimated from the empirically observed equity value and volatility,

$$E_t = V_t N(d_1) - e^{rT} KN(d_2); \quad \sigma_E = \frac{V}{E} \frac{\partial E}{\partial V} \sigma_A$$

- \blacktriangleright Other information, μ and K, obtained from the firm's balance sheet.
- DM^{Unified} integrates information on credit, liquidity, and bailout.
 - ▶ Bailout π_q : using our firm-level government-holdings variable.
 - ▶ Liquidity ξ : set to 1 and 2 before and after 2018Q2.
 - Estimate the unlevered asset value and volatility from the equity market.
 - ▶ Compute the endogenous default boundary V_B , and DM = $\sigma_A/\ln(V_t/V_B)$.

Government Equity Holdings

Distribution of Govt Holdings

Time-Series of Govt Holdings

Empirically Estimated Default Measures (DM)

Our Unified DM

Merton's DM

17Q1

18Q1 19Q1

20Q1

$$\mathsf{CreditSpread}_{i,t} = a + \mathbf{b} \, \mathsf{NSOE}_{i,t} + \mathbf{c} \, \mathsf{DM}_{i,t} + d \, \mathsf{Rating}_{i,t} + \sum_k \mathsf{Controls}_{i,t}^k + \epsilon_{i,t}$$

	Phase I				Phase II				Phase III			
NSOE	0.20***	0.20***	0.21**	0.17**	0.27***	0.32***	0.17	0.06	1.13***	1.16***	-0.04	0.06
	[2.97]	[2.84]	[2.57]	[1.96]	[4.28]	[5.05]	[1.51]	[0.82]	[7.76]	[7.88]	[-0.21]	[0.38]
Merton DM		-0.12				1.36***				4.60***		
		[-0.38]				[4.52]				[4.92]		
GovtHoldings			0.04				-0.26				-2.86***	
			[0.23]				[-1.24]				[-6.95]	
Unified DM				0.34				2.27***				7.23***
				[0.91]				[6.26]				[9.92]
Rating	0.52***	0.52***	0.52***	0.52***	0.53***	0.53***	0.52***	0.52***	1.19***	1.11***	1.15***	1.23***
	[6.45]	[6.35]	[6.30]	[6.61]	[10.62]	[10.93]	[10.47]	[10.67]	[5.12]	[5.06]	[4.91]	[5.91]
Obs	4,292	4,292	4,292	4,292	9,967	9,967	9,967	9,967	5,338	5,338	5,338	5,338
$Adj\;R^2$	0.546	0.546	0.546	0.547	0.455	0.465	0.456	0.476	0.376	0.392	0.390	0.423

$$\mathsf{CreditSpread}_{i,t} = a + \mathbf{b} \, \mathsf{NSOE}_{i,t} + \mathbf{c} \, \mathsf{DM}_{i,t} + d \, \mathsf{Rating}_{i,t} + \sum_k \mathsf{Controls}_{i,t}^k + \epsilon_{i,t}$$

	Phase I					Phase II				Phase III			
NSOE	0.20***	0.20***	0.21**	0.17**	0	.27***	0.32***	0.17	0.06	1.13***	1.16***	-0.04	0.06
	[2.97]	[2.84]	[2.57]	[1.96]		[4.28]	[5.05]	[1.51]	[0.82]	[7.76]	[7.88]	[-0.21]	[0.38]
Merton DM		-0.12					1.36***				4.60***		
		[-0.38]					[4.52]				[4.92]		
GovtHoldings			0.04					-0.26				-2.86***	
			[0.23]					[-1.24]				[-6.95]	
Unified DM				0.34					2.27***				7.23***
				[0.91]					[6.26]				[9.92]
Rating	0.52***	0.52***	0.52***	0.52***	0	.53***	0.53***	0.52***	0.52***	1.19***	1.11***	1.15***	1.23***
	[6.45]	[6.35]	[6.30]	[6.61]	[10.62]	[10.93]	[10.47]	[10.67]	[5.12]	[5.06]	[4.91]	[5.91]
Obs	4,292	4,292	4,292	4,292		9,967	9,967	9,967	9,967	5,338	5,338	5,338	5,338
$Adj\;R^2$	0.546	0.546	0.546	0.547		0.455	0.465	0.456	0.476	0.376	0.392	0.390	0.423

$$\mathsf{CreditSpread}_{i,t} = a + \mathbf{b} \, \mathsf{NSOE}_{i,t} + \mathbf{c} \, \mathsf{DM}_{i,t} + d \, \mathsf{Rating}_{i,t} + \sum_k \mathsf{Controls}_{i,t}^k + \epsilon_{i,t}$$

	Phase I				Phase II				Phase III			
NSOE	0.20***	0.20***	0.21**	0.17**	0.27***	0.32***	0.17	0.06	1.13***	1.16***	-0.04	0.06
	[2.97]	[2.84]	[2.57]	[1.96]	[4.28]	[5.05]	[1.51]	[0.82]	[7.76]	[7.88]	[-0.21]	[0.38]
Merton DM		-0.12				1.36***				4.60***		
		[-0.38]				[4.52]				[4.92]		
GovtHoldings			0.04				-0.26				-2.86***	
			[0.23]				[-1.24]				[-6.95]	
Unified DM				0.34				2.27***				7.23***
				[0.91]				[6.26]				[9.92]
Rating	0.52***	0.52***	0.52***	0.52***	0.53***	0.53***	0.52***	0.52***	1.19***	1.11***	1.15***	1.23***
	[6.45]	[6.35]	[6.30]	[6.61]	[10.62]	[10.93]	[10.47]	[10.67]	[5.12]	[5.06]	[4.91]	[5.91]
Obs	4,292	4,292	4,292	4,292	9,967	9,967	9,967	9,967	5,338	5,338	5,338	5,338
Adj R ²	0.546	0.546	0.546	0.547	0.455	0.465	0.456	0.476	0.376	0.392	0.390	0.423

The SOE Premium

Explaining the SOE Premium

Price Discovery

$\mathsf{CreditSpread}_{i,t} = a + \mathbf{b} \, \mathsf{DM}_{i,t} + c \, \mathsf{Rating}_{i,t} + \sum_k \mathsf{Controls}_{i,t}^k + \epsilon_{i,t}$

Merton's DM

Unified DM

The Real Impact

Quarterly Return on Asset

Difference in ROA

The Real Impact

	Quarterly ROA (%)										
	Phase I	Phase II	Phase III								
NSOE	0.56***	0.52***	0.13								
	[7.76]	[8.83]	[1.07]								
EquitySize	0.18***	0.19***	0.35***								
	[6.00]	[6.33]	[8.69]								
Constant	-3.54***	-4.33***	-7.40***								
	[-4.85]	[-6.04]	[-9.76]								
Obs	15,724	18,533	10,868								
Adj R^2	0.065	0.063	0.095								

Quarterly Return on Asset

 $\mathsf{ROA}_{i,t} = a + \mathbf{b} \, \mathsf{NSOE}_{i,t} + c \, \mathsf{EquitySize}_{i,t} + \epsilon_{i,t}$

Understanding the Post-Event Performance Deterioration

- Credit deterioration $\Delta DM_{i,t} = DM_{i,t} \overline{DM}_{i,t-1}$ at the event quarter (t=2018Q2).
- Post-event performance deterioration: $\Delta ROA_{i,t+\tau} = ROA_{i,t+\tau} \overline{ROA}_{i,t-1}$

	18Q3 $\tau \in [1,1]$	18Q4 $\tau \in [1,2]$	$\begin{array}{c} 19\text{Q1} \\ \tau \in [1,3] \end{array}$	$\begin{array}{c} 19 Q 2 \\ \tau \in [1,4] \end{array}$	$\begin{array}{c} \text{19Q3} \\ \tau \in [1,5] \end{array}$	19Q4 $\tau \in [1, 6]$	$\begin{array}{c} \textbf{20Q1} \\ \tau \in [1,7] \end{array}$	$\begin{array}{c} 20 Q 2 \\ \tau \in [1,8] \end{array}$
NSOE	-0.14***	-0.88***	-0.74***	-0.63***	-0.58***	-0.74***	-0.76***	-0.69***
	[-3.02]	[-12.14]	[-14.38]	[-15.08]	[-16.21]	[-19.61]	[-22.71]	[-22.50]
SOE	0.02	-0.16***	-0.13***	-0.08***	-0.08***	-0.12***	-0.20***	-0.17***
	[0.53]	[-3.28]	[-3.50]	[-2.58]	[-2.93]	[-4.81]	[-8.34]	[-7.46]
NSOE-SOE	-0.17**	-0.67***	-0.57***	-0.52***	-0.47***	-0.58***	-0.53***	-0.50***
	[-2.41]	[-7.31]	[-8.55]	[-9.56]	[-10.03]	[-12.29]	[-12.41]	[-12.72]

The Post-Event Performance Deterioration of Non-SOEs Relative to SOEs

Credit deterioration of non-SOEs leads to subsequent performance deterioration:

$$\Delta \mathbf{ROA}_{i,t+\tau} = a + \beta^{\mathsf{DM}} \, \Delta \mathbf{DM}_{i,t} + c \, \mathsf{Equity} \, \, \mathsf{Size}_{i,t+\tau} + \epsilon_{i,t+\tau}$$

	Predic	ctability eta^{DN}	^ℳ (Unified △	VDM)	Predi	Predictability $eta^{\sf DM}$ (Merton $\Delta {\sf DM}$)				
	$\tau \in [1,2]$	$\tau \in [1,4]$	$\tau \in [1,6]$	$\tau \in [1,8]$	$\tau \in [1,2]$	$\tau \in [1,4]$	$\tau \in [1,6]$	$\tau \in [1,8]$		
NSOE	-5.45***	-3.71***	-4.01***	-3.36***	-2.04*	-0.90	-0.79	-0.54		
	[-4.31]	[-5.15]	[-5.98]	[-6.25]	[-1.80]	[-1.42]	[-1.32]	[-1.16]		
SOE	-1.45	-1.01	-1.16*	-0.67	-0.61	-0.20	-0.07	-0.02		
	[-1.05]	[-1.27]	[-1.67]	[-1.15]	[-0.98]	[-0.50]	[-0.20]	[-0.06]		
NSOE-SOE	-4.28**	-2.80**	-3.03***	-2.70***	-1.48	-0.72	-0.81	-0.53		
	[-2.28]	[-2.57]	[-3.11]	[-3.37]	[-1.16]	[-0.96]	[-1.17]	[-0.95]		

The Post-Event Performance Deterioration of Non-SOEs Relative to SOEs

$$\Delta \text{ROA}_{i,t+\tau} = a + b^{\text{NSOE}} \, \text{NSOE}_{i,t+\tau} + c \, \text{Equity Size}_{i,t+\tau} + \epsilon_{i,t+\tau}$$

	Perform	ance Gap b^{N}	^{ISOE} (Unifie	d ΔDM)	Performance Gap b^{NSOE} (Merton ΔDM)				
	$\tau \in [1,2]$	$\tau \in [1,4]$	$\tau \in [1,6]$	$\tau \in [1,8]$		$\tau \in [1,2]$	$\tau \in [1,4]$	$\tau \in [1,6]$	$\tau \in [1,8]$
$High\ \Delta DM_t$	-0.77***	-0.60***	-0.67***	-0.60***		-0.86***	-0.62***	-0.73***	-0.62***
	[-5.44]	[-7.35]	[-9.22]	[-10.03]		[-5.93]	[-7.51]	[-9.93]	[-10.42]
$Low\ \DeltaDM_t$	-0.40***	-0.32***	-0.37***	-0.31***		-0.50***	-0.44***	-0.47***	-0.40***
	[-3.21]	[-4.34]	[-5.84]	[-5.72]		[-4.36]	[-6.15]	[-7.53]	[-7.73]
High - Low	-0.44**	-0.32***	-0.34***	-0.33***		-0.28	-0.12	-0.16*	-0.14*
	[-2.51]	[-3.11]	[-3.68]	[-4.31]		[-1.63]	[-1.17]	[-1.76]	[-1.78]

- The post-event performance gap between SOEs and non-SOEs stronger for firms more affected by the credit event: consistent with our hypothesis.
- Even the less-affected non-SOEs also underperform relative to their SOE counterparts: the disadvantage faced by non-SOEs goes beyond the credit channel.

Conclusions

- Studying China's credit market using a model that integrates credit risk, liquidity, and bailout, we find a deepening divide between SOEs and non-SOEs.
 - ► Explosive SOE premium amidst liquidity deterioration.
 - Increased importance of government support: SOEs more sensitive to bailout.
 - Heightened default risk: non-SOEs more sensitive to credit quality.
- Examining the real impact, we find
 - ► Severe performance deteriorations of non-SOEs relative to SOEs, reversing the long-standing trend of non-SOEs outperforming SOEs.
 - ► Stronger credit deterioration in 2018Q2 leads to stronger performance deterioration for non-SOEs, but not for SOEs.
 - ► The relative performance deterioration of non-SOEs over SOEs is present even for firms less affected by the credit deterioration, indicating that the disadvantage faced by non-SOEs goes beyond the credit channel.