# Yield and Duration <br> Financial Markets, Day 3, Class 1 

## Jun Pan

Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiao Tong University

April 20, 2019

## Outline for Day 3

- Class 1: Yield and duration.
- Class 2: Factors influencing the yield curve.
- Class 3: Modeling the yield curve.
- Class 4: Interest rate swaps.
- Class 5: Corporate bonds and credit risk.
- Class 6: Review and quiz.


## Outline for Class 1

- From equity to fixed income.
- Bond price and yield: duration and convexity.
- The universe of fixed income securities.


## From Equity to Fixed Income

- So how are things different? (Michael Lewis: Equities in Dallas.)
- A bond matures. At maturity, the bond pays back the principal.
- Before maturity, it has scheduled coupon payments.
- Its key risk factor: interest rate exposure, which is measured by duration.
- Very often, we will refer to buying bonds as buying duration.
- This becomes quite useful when moving from bonds to interest-rate swaps: different in structure but same as vehicles for duration.
- So beta in equity, and duration in fixed income.
- The cheapness and richness of a bond is often measured in the space of yields to maturity.
- So Black-Scholes implied vol in options and yield in fixed income.


## Monthly Returns

Monthly Returns (\%)


[^0]
## Monthly Returns



## Monthly Returns



## Stock and Bond Returns

Returns of Stock and Bond and Inflation

| Monthly Returns | m | std | Sharpe | min | max | corr | lation |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1942-2014 | (\%) | (\%) | ratio | (\%) | (\%) | Stock | TBill | 10Y |
| Stock (CRSP VW) | 1.03 | 4.16 | 0.17 | -21.58 | 16.81 | 1.00 | -0.05 | 0.10 |
| 10Y Bond | 0.47 | 2.00 | 0.08 | -6.68 | 10.00 | 0.10 | 0.12 | 1.00 |
| 5 Y Bond | 0.46 | 1.38 | 0.10 | -5.80 | 10.61 | 0.07 | 0.19 | 0.90 |
| 2Y Bond | 0.42 | 0.77 | 0.13 | -3.69 | 8.42 | 0.08 | 0.37 | 0.76 |
| 1Y Bond | 0.40 | 0.50 | 0.16 | -1.72 | 5.61 | 0.08 | 0.59 | 0.62 |
| 1M TBill | 0.32 | 0.26 |  | -0.00 | 1.52 | -0.05 | 1.00 | 0.12 |
| CPI | 0.31 | 0.45 |  | -1.92 | 5.88 | -0.07 | 0.26 | -0.07 |
| Monthly Returns | mean <br> (\%) | $\begin{aligned} & \hline \text { std } \\ & (\%) \end{aligned}$ | Sharpe ratio | $\begin{gathered} \min \\ (\%) \end{gathered}$ | $\begin{gathered} \max \\ (\%) \\ \hline \end{gathered}$ | correlation with |  |  |
| 1990-2014 |  |  |  |  |  | Stock | TBill | 10Y |
| Stock (CRSP VW) | 0.87 | 4.22 | 0.15 | -16.70 | 11.41 | 1.00 | 0.01 | -0.06 |
| 10Y Bond | 0.57 | 1.99 | 0.16 | -6.68 | 8.54 | -0.06 | 0.07 | 1.00 |
| 5 Y Bond | 0.50 | 1.24 | 0.20 | -3.38 | 4.52 | -0.10 | 0.15 | 0.93 |
| 2Y Bond | 0.39 | 0.54 | 0.26 | -1.30 | 2.07 | -0.11 | 0.41 | 0.74 |
| 1Y Bond | 0.33 | 0.31 | 0.26 | -0.33 | 1.31 | -0.03 | 0.72 | 0.51 |
| 1M TBill | 0.25 | 0.19 |  | -0.00 | 0.68 | 0.01 | 1.00 | 0.07 |
| CPI | 0.21 | 0.34 |  | -1.92 | 1.22 | -0.04 | 0.18 | -0.16 |

## Bond and Equity Funds

A Tale of Two Funds


## Yield to Maturity $y$ and Bond Price $P$

- At issuance, a Treasury bond has the following terms fixed: face value $=\$ 100$; coupon rate $=c$; maturity $=\mathrm{T}$ years.
- Treasury bonds pay coupon semi-annually, and, at issuance, the coupon rate $c$ is chosen so that the bond is priced at par: $P=\$ 100$ and $c=y$.
- Later, with interest rate fluctuations, both $P$ and $y$ change and there is a deterministic, inverse relationship between the two:

$$
P=\sum_{n=1}^{2 T} \frac{\frac{c}{2} \times 100}{\left(1+\frac{y}{2}\right)^{n}}+\frac{100}{\left(1+\frac{y}{2}\right)^{2 T}} .
$$

- Increasing interest rate is bad news for bonds and decreasing interest rate is good news for bonds.
- Decreasing interest rate after issuance turns the bond into premium $P>\$ 100$, and increasing interest rate turns it into discount $P<\$ 100$.


## Fixed-Rate Coupon Bonds

Coupons and Principal Payments


$$
P=\sum_{n=1}^{2 T} \frac{\frac{c}{2} \times 100}{\left(1+\frac{y}{2}\right)^{n}}+\frac{100}{\left(1+\frac{y}{2}\right)^{2 T}} .
$$

## Treasury Yield Curve

- A typical yield curve (also called the term structure of interest rate):

- A yield curve can be created for any specific segment, from triple-A rated mortgage-backed securities to single-B rated corporate bonds.
- The Treasury bond yield curve is the most widely used. The normal shape of the yield curve is upward, but, occasionally, it slopes downward, or inverts.


## Treasury Yield Curve on November 8, 1994 (Noise=2.60)



## Treasury Yield Curve on September 15, 2008 ( Noise=6.64)



## Treasury Yield Curve on December 11, 2008 (Noise=20.4)



## Treasury Constant Maturity Yields

U.S. Treasury Constant Maturity Yield (in percent)


## Daily Changes in Treasury Yields

## Daily Changes in Treasury Yields

| sample | maturity | std <br> $(\mathrm{bp})$ | min <br> $(\mathrm{bp})$ | $\max$ <br> $(\mathrm{bp})$ |  |  |
| :---: | :---: | :---: | ---: | :---: | ---: | :---: |
| $1982-2015$ | 3 M | 7.63 | -104 | 19820222 | 169 | 19820201 |
|  | 2 Y | 6.86 | -84 | 19871020 | 80 | 19820201 |
|  | 10 Y | 6.80 | -75 | 19871020 | 44 | 19820201 |
|  | 30 Y | 6.30 | -76 | 19871020 | 42 | 19820201 |
| $1990-2008$ | 3 M | 5.18 | -64 | 20070820 | 58 | 20001226 |
|  | 2 Y | 6.05 | -54 | 20010913 | 36 | 19940404 |
|  | 10 Y | 5.78 | -23 | 19950613 | 39 | 19940404 |
|  | 30 Y | 4.99 | -33 | 20011031 | 32 | 19940404 |
| $2008-2015$ | 3 M | 4.94 | -81 | 20080917 | 76 | 20080919 |
|  | 2 Y | 4.86 | -45 | 20080915 | 38 | 20080919 |
|  | 10 Y | 6.42 | -51 | 20090318 | 24 | 20080930 |
|  | 30 Y | 6.12 | -32 | 20081120 | 28 | 20110811 |

## Dollar Duration (DV01) and Modified Duration

- Dollar Duration:

$$
-\frac{\partial P}{\partial y}=\frac{1}{1+\frac{y}{2}}\left[\sum_{n=1}^{2 T} \frac{n}{2} \times \frac{\frac{c}{2} \times 100}{\left(1+\frac{y}{2}\right)^{n}}+T \times \frac{100}{\left(1+\frac{y}{2}\right)^{2 T}}\right],
$$

which is the negative of $\$$ change in bond price per unit change in yield.

- DV01 = Dollar Duration/10000 (\$ per 1 basis point change in yield):
- Modified Duration:

$$
-\frac{1}{P} \frac{\partial P}{\partial y}=\frac{1}{1+\frac{y}{2}} \frac{\sum_{n=1}^{2 T} \frac{n}{2} \times \frac{\frac{c}{2} \times 100}{\left(1+\frac{y}{2}\right)^{n}}+T \times \frac{100}{\left(1+\frac{y}{2}\right)^{2 T}}}{\sum_{n=1}^{2 T} \frac{\frac{c}{2} \times 100}{\left(1+\frac{y}{2}\right)^{n}}+\frac{100}{\left(1+\frac{y}{2}\right)^{2 T}}}
$$

which is effectively a weighted sum of semi-annual coupon payment dates: $6 m, 1 y, 1.5 y, \ldots$, and $T$ years. It captures the percentage change in bond price (i.e., bond return) per unit change in yield.

## Modified Duration

## Modified Duration

| yield $y$ | $2 \%$ | $5 \%$ | $6 \%$ | $6 \%$ | $6 \%$ | $7 \%$ | $10 \%$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| coupon $c$ | $2 \%$ | $5 \%$ | $4.8 \%$ | $6 \%$ | $7.2 \%$ | $7 \%$ | $10 \%$ |
| $T=1$ | 0.99 | 0.96 | 0.96 | 0.96 | 0.95 | 0.95 | 0.93 |
| $T=2$ | 1.95 | 1.88 | 1.87 | 1.86 | 1.84 | 1.84 | 1.77 |
| $T=3$ | 2.90 | 2.75 | 2.74 | 2.71 | 2.68 | 2.66 | 2.54 |
| $T=5$ | 4.74 | 4.38 | 4.36 | 4.27 | 4.18 | 4.16 | 3.86 |
| $T=7$ | 6.50 | 5.85 | 5.81 | 5.65 | 5.51 | 5.46 | 4.95 |
| $T=10$ | 9.02 | 7.79 | 7.71 | 7.44 | 7.21 | 7.11 | 6.23 |
| $T=20$ | 16.42 | 12.55 | 12.12 | 11.56 | 11.13 | 10.68 | 8.58 |
| $T=30$ | 22.48 | 15.45 | 14.46 | 13.84 | 13.39 | 12.47 | 9.46 |

## Calculating Modified Duration

Coupons and Principal Payments


$$
D^{\bmod }=\frac{1}{1+\frac{y}{2}} \frac{\sum_{n=1}^{2 T} \frac{n}{2} \times \frac{\frac{c}{2} \times 100}{\left(1+\frac{y}{2}\right)^{n}}+T \times \frac{100}{\left(1+\frac{y}{2}\right)^{2 T}}}{\sum_{n=1}^{2 T} \frac{\frac{c}{2} \times 100}{\left(1+\frac{y}{2}\right)^{n}}+\frac{100}{\left(1+\frac{y}{2}\right)^{2 T}}}
$$

## Bond Price, Yield, and Duration



## Duration and Convexity

- Duration and convexity are meaningful only because we work in the yield space (for convenience), and the profit/loss is in the dollar space.
- Duration is a bridge that connects the two:
- Dollar Duration:

$$
\Delta P_{t}=P_{t}-P_{t-1} \approx-D^{\$} \times\left(y_{t}-y_{t-1}\right)=-\mathrm{D}^{\$} \times \Delta y_{t}
$$

- Modified Duration:

$$
R_{t}=\frac{\Delta P_{t}}{P_{t-1}}=\frac{P_{t}-P_{t-1}}{P_{t-1}} \approx-\mathrm{D}^{\bmod } \times\left(y_{t}-y_{t-1}\right)=-\mathrm{D}^{\bmod } \times \Delta y_{t}
$$

- The relation between price and yield is not linear, but convex:
- With decreasing $y$, duration increases: profits amplified.
- With increasing $y$, duration decreases: losses dampened.
- Bonus from positive convexity, not offered by a security linear in $y$.


## The Universe of Fixed Income Securities

- US treasuries: bills, notes, bonds.
- Treasury inflation protected securities (TIPS).
- Muni's
- Agencies, government sponsored enterprises (GSE)
- Mortgage-backed
- Corporate bonds
- Emerging market bonds
- LIBOR and swaps
- Fixed income derivatives
- Credit derivatives


## Key Risk Factors in Fixed Income

- Yield curve uncertainties:
- level of interest rates.
- the slope of the yield curve (long-term yield minus short-term yield).
- interest rate volatility (e.g., swaption implied vol).
- Credit risk (e.g., yield spread between US investment grade and US Treasury bond of similar maturity).
- Counterparty risk and other interesting spreads: LIBOR-OIS, swap spread, old bond and new bond spread, CDS-bond basis.


## Outstanding US Bond Market Debt in \$ Billions

|  | Municipal | Treasury | Mortgage <br> Related | Corporate <br> Debt | Federal <br> Agency Securities | Money <br> Markets | Asset- <br> Backed | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 1,272.1 | 2,471.6 | 1,577.1 | 1,463.6 | 421.5 | 565.9 | 92.6 | 7,864.4 |
| 1992 | 1,295.4 | 2,754.1 | 1,774.3 | 1,563.3 | 462.4 | 579.0 | 117.3 | 8,545.9 |
| 1993 | 1,361.7 | 2,989.5 | 2,209.0 | 1,790.2 | 550.8 | 580.0 | 133.3 | 9,614.6 |
| 1994 | 1,325.8 | 3,126.0 | 2,352.9 | 1,941.7 | 727.7 | 623.5 | 162.8 | 10,260.3 |
| 1995 | 1,268.2 | 3,307.2 | 2,432.1 | 2,096.9 | 924.0 | 700.4 | 215.7 | 10,944.4 |
| 1996 | 1,261.6 | 3,444.7 | 2,606.4 | 2,268.0 | 925.8 | 803.0 | 298.2 | 11,607.7 |
| 1997 | 1,318.5 | 3,441.7 | 2,871.8 | 2,478.1 | 1,021.8 | 979.4 | 394.9 | 12,506.2 |
| 1998 | 1,402.7 | 3,340.5 | 3,243.4 | 2,809.8 | 1,302.1 | 1,172.6 | 478.0 | 13,749.1 |
| 1999 | 1,457.1 | 3,266.0 | 3,832.2 | 3,163.5 | 1,620.0 | 1,402.4 | 583.5 | 15,324.7 |
| 2000 | 1,480.7 | 2,951.9 | 4,119.3 | 3,461.3 | 1,853.7 | 1,614.0 | 701.9 | 16,182.8 |
| 2001 | 1,603.4 | 2,968.0 | 4,711.0 | 3,877.1 | 2,157.4 | 1,474.0 | 812.0 | 17,602.9 |
| 2002 | 1,762.8 | 3,205.3 | 5,289.4 | 4,075.5 | 2,377.7 | 1,374.9 | 904.8 | 18,990.4 |
| 2003 | 1,900.4 | 3,575.2 | 5,714.5 | 4,370.1 | 2,626.2 | 1,292.9 | 995.3 | 20,474.6 |
| 2004 | 2,877.7 | 3,945.8 | 6,301.7 | 4,595.6 | 2,700.6 | 1,399.1 | 1,100.2 | 22,920.7 |
| 2005 | 3,101.4 | 4,170.0 | 7,218.1 | 4,664.6 | 2,616.0 | 1,644.2 | 1,281.4 | 24,695.7 |
| 2006 | 3,287.5 | 4,328.0 | 8,389.9 | 4,904.7 | 2,634.0 | 1,958.4 | 1,656.9 | 27,159.4 |
| 2007 | 3,551.7 | 4,522.6 | 9,386.0 | 5,337.7 | 2,906.2 | 1,788.9 | 1,963.5 | 29,456.6 |
| 2008 | 3,667.6 | 5,783.6 | 9,467.4 | 5,514.0 | 3,210.6 | 1,599.8 | 1,829.5 | 31,072.5 |
| 2009 | 3,850.8 | 7,260.6 | 9,352.5 | 6,100.1 | 2,727.5 | 1,138.0 | 1,712.1 | 32,141.5 |
| 2010 | 3,961.4 | 8,853.0 | 9,258.4 | 6,743.9 | 2,538.8 | 1,057.6 | 1,507.8 | 33,921.0 |
| 2011 | 3,923.7 | 9,928.4 | 9,075.5 | 6,862.5 | 2,326.9 | 969.3 | 1,359.0 | 34,445.3 |
| 2012 | 3,920.9 | 11,046.1 | 8,838.1 | 7,266.2 | 2,095.8 | 952.4 | 1,280.3 | 35,399.8 |
| 2013 | 3,852.8 | 11,854.4 | 8,742.6 | 7,682.2 | 2,056.9 | 951.6 | 1,285.7 | 36,426.3 |
| 2014 | 3,806.9 | 12,504.8 | 8,842.0 | 8,045.0 | 2,028.7 | 930.4 | 1,349.4 | 37,507.2 |
| 2015 | 3,821.7 | 13,191.6 | 8,894.8 | 8,284.7 | 1,995.4 | 941.5 | 1,383.7 | 38,513.3 |
| 2016 | 3,866.4 | 13,908.2 | 9,023.4 | 8,688.5 | 1,971.7 | 884.9 | 1,397.1 | 39,740.2 |
| 2017 | 3,879.3 | 14,468.8 | 9,304.5 | 8,994.0 | 1,934.7 | 965.9 | 1,468.9 | 41,016.1 |
| 2018 | 3,821.1 | 15,608.0 | 9,732.1 | 9,200.7 | 1,841.6 | 1,076.1 | 1,677.1 | 42,956.7 |

## Issuance in the US Bond Markets (USD Billions)

| Year | M | Municipal | Treasury | MortgageRelated | Corporate Debt | Federal <br> Agency Securities | Asset-Backed | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1996 |  | 182.9 | 612.4 | 551.8 | 337.4 | 277.9 | 121.2 | 2,083.5 |
| 1997 |  | 218.6 | 540.0 | 725.2 | 455.3 | 323.1 | 143.1 | 2,405.3 |
| 1998 |  | 284.1 | 438.4 | 1,260.6 | 588.5 | 596.4 | 184.2 | 3,352.1 |
| 1999 |  | 224.4 | 364.6 | 1,121.6 | 602.1 | 548.0 | 196.3 | 3,057.0 |
| 2000 |  | 198.2 | 312.4 | 779.9 | 575.1 | 446.6 | 240.3 | 2,552.5 |
| 2001 |  | 286.2 | 380.7 | 1,816.7 | 770.6 | 941.0 | 261.4 | 4,456.7 |
| 2002 |  | 355.7 | 571.6 | 2,514.9 | 636.7 | 1,041.5 | 268.6 | 5,389.0 |
| 2003 |  | 380.1 | 745.2 | 3,537.1 | 774.3 | 1,219.5 | 287.6 | 6,943.8 |
| 2004 |  | 358.1 | 853.3 | 2,428.3 | 775.8 | 877.8 | 330.6 | 5,623.8 |
| 2005 |  | 407.1 | 746.2 | 2,764.1 | 750.1 | 635.0 | 473.7 | 5,776.2 |
| 2006 |  | 385.9 | 788.5 | 2,691.1 | 1,058.4 | 691.8 | 658.2 | 6,273.9 |
| 2007 |  | 429.2 | 752.3 | 2,434.2 | 1,141.0 | 831.2 | 827.6 | 6,415.5 |
| 2008 |  | 389.3 | 1,037.3 | 1,394.0 | 717.0 | 924.8 | 215.2 | 4,677.5 |
| 2009 |  | 409.5 | 2,074.9 | 2,172.1 | 945.4 | 1,244.4 | 177.9 | 7,024.3 |
| 2010 |  | 433.1 | 2,319.8 | 2,012.6 | 1,055.4 | 1,362.1 | 125.9 | 7,309.0 |
| 2011 |  | 295.1 | 2,103.3 | 1,724.8 | 1,025.1 | 1,025.3 | 151.0 | 6,324.5 |
| 2012 |  | 382.6 | 2,304.5 | 2,195.1 | 1,371.2 | 925.5 | 259.0 | 7,438.0 |
| 2013 |  | 335.3 | 2,140.0 | 2,120.2 | 1,379.9 | 652.9 | 304.1 | 6,932.5 |
| 2014 |  | 339.1 | 2,215.4 | 1,439.6 | 1,438.4 | 558.7 | 393.4 | 6,384.6 |
| 2015 |  | 405.1 | 2,122.5 | 1,800.7 | 1,494.8 | 645.5 | 333.4 | 6,801.9 |
| 2016 |  | 445.8 | 2,169.4 | 2,044.2 | 1,527.6 | 927.9 | 325.4 | 7,440.3 |
| 2017 |  | 448.0 | 2,224.3 | 1,934.8 | 1,652.4 | 731.3 | 550.3 | 7,541.2 |
| 2018 |  | 338.3 | 2,684.6 | 1,898.6 | 1,336.7 | 649.2 | 516.9 | 7,424.3 |

## Average Daily Trading Volume (USD Billions)

Federal Agency

|  | Municipal | Treasury | Agency MBS | Non-Agency MBS | ABS | Corporate Debt | Securities |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1996 | 1.1 | 203.7 | 38.1 | - | - | - | 31.1 |
| 1997 | 1.1 | 212.1 | 47.1 | - | - | - | 40.2 |
| 1998 | 3.3 | 226.6 | 70.9 | - | - | - | 47.6 |
| 1999 | 8.3 | 186.5 | 67.1 | - | - | - | 54.5 |
| 2000 | 8.8 | 206.5 | 69.5 | - | - | - | 72.8 |
| 2001 | 8.8 | 297.9 | 112.0 | - | - | - | 90.2 |
| 2002 | 10.7 | 366.4 | 154.5 | - | - | 17.8 | 81.8 |
| 2003 | 12.6 | 433.5 | 206.0 | - | - | 18.0 | 81.7 |
| 2004 | 14.8 | 499.0 | 207.4 | - | - | 17.3 | 78.8 |
| 2005 | 16.9 | 554.5 | 251.8 | - | - | 16.6 | 78.8 |
| 2006 | 23.1 | 524.7 | 254.6 | - | - | 16.9 | 74.4 |
| 2007 | 25.1 | 570.2 | 320.1 | - | - | 16.4 | 83.0 |
| 2008 | 19.4 | 553.1 | 344.9 | - | - | 14.3 | 104.5 |
| 2009 | 12.5 | 407.9 | 299.9 | - | - | 19.9 | 77.7 |
| 2010 | 13.3 | 528.2 | 320.6 | - | - | 20.5 | 11.2 |
| 2011 | 11.3 | 567.8 | 243.3 | 4.4 | 1.5 | 20.6 | 9.6 |
| 2012 | 11.3 | 518.9 | 280.4 | 4.5 | 1.5 | 22.6 | 9.7 |
| 2013 | 11.2 | 545.4 | 222.8 | 4.1 | 1.3 | 24.7 | 6.6 |
| 2014 | 9.9 | 504.2 | 178.0 | 3.7 | 1.5 | 26.7 | 5.3 |
| 2015 | 8.6 | 490.1 | 193.0 | 3.1 | 1.4 | 27.9 | 4.5 |
| 2016 | 10.6 | 519.1 | 206.6 | 2.9 | 1.3 | 29.6 | 5.4 |
| 2017 | 10.8 | 505.2 | 209.1 | 2.5 | 1.4 | 30.6 | 4.1 |
| 2018 | 11.6 | 547.8 | 219.0 | 2.5 | 1.4 | 31.2 | 3.4 |

Average daily dollar trading volume in September 2015:
Equity \$321bn, Treasury \$499bn, and Corporate Bonds \$25bn.

## The Benchmark Role of Treasury Yield Curve

- Market participants rely on the Treasury curve to assess the cost of funds at different borrowing horizons.
- Price discovery about inflation prospects and other macroeconomic fundamentals occurred mainly in the Treasury market.
- This benchmark status derives from features unique to Treasuries:
- The most credit-worthy, essentially free of default risk.
- Large amount outstanding, highly liquid.
- A wide range of maturities, facilitating the construction of yield curves.
- Well developed repo and derivatives markets for Treasuries, enabling long and short positions to reflect views of future interest rates.
- This benchmark role of Treasuries is facing increasing competition from private sector debt instruments (e.g., interest rate swaps).


## The Determinants of the Yield Curve

Some often used explanations (not mutually exclusive):

- Investor's expectations of future interest rates.
- Premiums required by investors to hold long-term bonds (e.g., risk premium and liquidity preference).
- Monetary policy.
- Expectations of future macroeconomic conditions (e.g., economic growth and inflation).
- Fiscal policy.
- Market segmentation; temporary imbalance of supply and demand.


[^0]:    Financial Markets, Day 3, Class 1
    Yield and Duration
    Jun Pan

