An overview of the options market:
 - Why options?
 - History, trading volume and market size.
 - Options exchanges and market participants.

The Black-Scholes option pricing model:
 - The Black-Scholes model.
 - Risk-neutral pricing.
 - The Black-Scholes formula.

Using the Black-Scholes formula:
 - The pricing of at-the-money options.
 - Black-Scholes option implied volatility.
Modern Finance

1952
- Portfolio Theory (Markowitz)

1961
- Two-Fund Separation (Tobin)

1964
- Investments and Capital Structure (Modigliani and Miller)

CAPM (Sharpe)

Efficient Markets Hypothesis (Samuelson, Fama)

1968
- Mutual Funds Study (Jensen)

1971
- Birth of Index Funds (McQuown)

1973
- Option Pricing Theory (Black, Scholes, Merton)

1981
- First US Options Exchange, CBOE

1983
- First Stock Index Futures

1985
- First TIPS

1987
- OTC Derivatives

1994
- Large Derivatives Losses

1997
- S&L Bailout

1998
- Collapse of Junk Bonds

2000
- First Stock Market Crash

2001
- WorldCom Scandal

2002
- Enron Scandal

2007
- Financial Crisis

2008
- Dodd-Frank

2011
- European Sovereign Crisis

2015
- Trump

2018
- Trade War
Sampling the Right Tail

Sample the Right Tail: Call Options with Increasing Strikes

- Strike at 100
- Strike at 110
- Strike at 120

Stock Price at the Time of Expiration ($)

Option Payoff ($)

Probability Density Function
Sampling the Left Tail

Sample the Left Tail: Put Options with Decreasing Strikes

- Green line: Strike at 100
- Blue line: Strike at 90
- Yellow line: Strike at 80

- X-axis: Stock Price at the Time of Expiration ($)
- Y-axis: Option Payoff ($)
A Brief History

- 1973: CBOE founded as the first US options exchange, and 911 contracts were traded on 16 underlying stocks on first day of trading.
- 1975: The Black-Scholes model was adopted for pricing options.
- 1983: On March 11, index option (OEX) trading begins; On July 1, options trading on the S&P 500 index (SPX) was launched.
- 1993: Introduces CBOE Volatility Index (VIX).
- 2004: CBOE Launches futures on VIX.
Trading Volumes

OCC Monthly Report for September 2015

<table>
<thead>
<tr>
<th></th>
<th>Equity</th>
<th>ETF</th>
<th>Index</th>
<th>SPX</th>
<th>VIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg daily contract (million)</td>
<td>7.57</td>
<td>7.33</td>
<td>2.04</td>
<td>1.14</td>
<td>0.76</td>
</tr>
<tr>
<td>avg daily premium ($ billion)</td>
<td>1.58</td>
<td>1.50</td>
<td>3.21</td>
<td>2.78</td>
<td>0.14</td>
</tr>
<tr>
<td>avg premium per contract ($)</td>
<td>211</td>
<td>205</td>
<td>1,575</td>
<td>2,474</td>
<td>195</td>
</tr>
<tr>
<td>put/call ratio of contract</td>
<td>0.80</td>
<td>1.48</td>
<td>1.21</td>
<td>1.87</td>
<td>0.60</td>
</tr>
<tr>
<td>put/call ratio of dollar volume</td>
<td>1.14</td>
<td>2.05</td>
<td>1.43</td>
<td>1.48</td>
<td>0.35</td>
</tr>
</tbody>
</table>

- For Sept 2015, the average daily trading in options is 16.94 million contracts and $6.30 billion; the average daily trading in stocks is 7.92 billion shares and $321 billion.

- End of Sept 2015, the open interest for equity and ETF options is 292 million contracts, and 23.7 million contracts for index options. The overall market size: about $95.7 billion.
Trading Volumes, Stocks vs Options

Average Daily Trading Volume (in million shares/contracts)

Source: NYSE and OCC (The Options Clearing Corporation)
Leverage Embedded in Call Options

Returns to an At-the-Money Call Option (%)

- one-month ($\sigma=20\%$)
- three-month ($\sigma=20\%$)

Underlying Stock Returns (%)
Leverage Embedded in Put Options

Returns to an At-the-Money Put Option (%)

- one-month ($\sigma=20\%$)
- three-month ($\sigma=20\%$)

Underlying Stock Returns (%)
After 6 years of litigation, CBOE in 2012 was able to retain its exclusive licenses on options on the S&P 500 index. As a result, CBOE remains its dominance in index options with over 98% of the market share.

The trading of equity and ETF options, however, is spread over 12 options exchanges:

<table>
<thead>
<tr>
<th>OCC Monthly Report for September 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBOE</td>
</tr>
<tr>
<td>Equity (%)</td>
</tr>
<tr>
<td>ETF (%)</td>
</tr>
</tbody>
</table>

This level of decentralized trading is not an option-only phenomenon. By now, US stocks are regularly traded on 11 exchanges (lit market) and many alternative platforms (dark pools).
Market Participants

By types,
- Designated market makers: facilitate trades and provide liquidity.
- Customers from full service brokerage firms: e.g., hedge funds.
- Customers from discount brokerage firms: e.g., retail investors.
- Firm proprietary traders: prop trading desks in investment banks.

By their activities against the market makers:
- open buy: buy options to open a new position.
- open sell: sell/write options to open a new position.
- close buy: buy options to close an existing position.
- close sell: sell/write options to close an existing position.
<table>
<thead>
<tr>
<th></th>
<th>open buy</th>
<th></th>
<th>open sell</th>
<th></th>
<th>close buy</th>
<th></th>
<th>close sell</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>put</td>
<td>call</td>
<td>put</td>
<td>call</td>
<td>put</td>
<td>call</td>
<td>put</td>
<td>call</td>
</tr>
<tr>
<td>Small Stocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avg volume</td>
<td>16</td>
<td>53</td>
<td>18</td>
<td>49</td>
<td>8</td>
<td>18</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>% Firm Proprietary</td>
<td>7.48</td>
<td>4.46</td>
<td>5.42</td>
<td>4.09</td>
<td>4.42</td>
<td>4.84</td>
<td>3.83</td>
<td>3.75</td>
</tr>
<tr>
<td>% Discount Broker</td>
<td>7.35</td>
<td>12.92</td>
<td>9.96</td>
<td>11.97</td>
<td>7.81</td>
<td>11.14</td>
<td>6.74</td>
<td>11.89</td>
</tr>
<tr>
<td>% Full-Service Broker</td>
<td>72.61</td>
<td>71.73</td>
<td>75.84</td>
<td>73.66</td>
<td>77.90</td>
<td>72.09</td>
<td>75.96</td>
<td>71.60</td>
</tr>
<tr>
<td>Medium Stocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avg volume</td>
<td>38</td>
<td>96</td>
<td>36</td>
<td>89</td>
<td>17</td>
<td>39</td>
<td>21</td>
<td>57</td>
</tr>
<tr>
<td>% Discount Broker</td>
<td>8.49</td>
<td>12.48</td>
<td>9.38</td>
<td>9.97</td>
<td>8.67</td>
<td>9.34</td>
<td>9.73</td>
<td>12.27</td>
</tr>
<tr>
<td>% Full-Service Broker</td>
<td>69.22</td>
<td>67.90</td>
<td>71.38</td>
<td>72.37</td>
<td>71.42</td>
<td>69.89</td>
<td>69.36</td>
<td>68.14</td>
</tr>
<tr>
<td>Large Stocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avg volume</td>
<td>165</td>
<td>359</td>
<td>135</td>
<td>314</td>
<td>66</td>
<td>159</td>
<td>90</td>
<td>236</td>
</tr>
<tr>
<td>% Discount Broker</td>
<td>9.77</td>
<td>13.18</td>
<td>7.83</td>
<td>8.02</td>
<td>7.73</td>
<td>7.55</td>
<td>11.31</td>
<td>13.64</td>
</tr>
<tr>
<td>% Full-Service Broker</td>
<td>63.60</td>
<td>64.70</td>
<td>69.68</td>
<td>71.98</td>
<td>68.72</td>
<td>69.95</td>
<td>65.27</td>
<td>65.84</td>
</tr>
<tr>
<td>S&P 500 (SPX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avg volume</td>
<td>17398</td>
<td>10254</td>
<td>12345</td>
<td>11138</td>
<td>7324</td>
<td>7174</td>
<td>10471</td>
<td>6317</td>
</tr>
<tr>
<td>% Firm Proprietary</td>
<td>23.51</td>
<td>34.29</td>
<td>35.71</td>
<td>25.51</td>
<td>32.51</td>
<td>20.05</td>
<td>20.10</td>
<td>28.24</td>
</tr>
<tr>
<td>% Discount Broker</td>
<td>4.22</td>
<td>4.19</td>
<td>1.38</td>
<td>1.59</td>
<td>1.48</td>
<td>1.72</td>
<td>4.45</td>
<td>4.78</td>
</tr>
<tr>
<td>% Full-Service Broker</td>
<td>58.24</td>
<td>48.16</td>
<td>48.81</td>
<td>59.45</td>
<td>49.75</td>
<td>63.79</td>
<td>59.58</td>
<td>51.72</td>
</tr>
</tbody>
</table>

A Nobel-Prize Winning Formula

The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 1997

"for a new method to determine the value of derivatives"

Robert C. Merton

1/2 of the prize

USA

Harvard University
Cambridge, MA, USA

b. 1944

Myron S. Scholes

1/2 of the prize

USA

Long Term Capital Management
Greenwich, CT, USA

b. 1941
(in Timmins, ON, Canada)
The Black-Scholes Model

The Model: Let S_t be the time-t stock price, ex dividend. Prof. Black, Merton, and Scholes use a geometric Brownian motion to model S_t:

$$dS_t = (\mu - q) S_t \, dt + \sigma S_t \, dB_t .$$

Drift: $(\mu - q) S_t \, dt$ is the deterministic component of the stock price. The stock price, ex dividend, grows at the rate of $\mu - q$ per year:

- μ: expected stock return (continuously compounded), around 12% per year for the S&P 500 index.
- q: dividend yield, round 2% per year for the S&P 500 index.

Diffusion: $\sigma S_t \, dB_t$ is the random component, with B_t as a Brownian motion. σ is the stock return volatility, around 20% per year for the S&P 500 index.
Brownian Motion

- **Independence of increments**: For all $0 = t_0 < t_1 < \ldots < t_m$, the increments are independent:

$$B(t_1) - B(t_0), B(t_2) - B(t_1), \ldots, B(t_m) - B(t_{m-1})$$

*Translating to Finance: stock returns are independently distributed. No predictability and zero auto-correlation $\rho = 0$."

- **Stationary normal increments**: $B_t - B_s$ is normally distributed with zero mean and variance $t - s$.

*Translating to Finance: stock returns are normally distributed. Over a fixed horizon of T, return volatility is scaled by \sqrt{T}."

- **Continuity of paths**: $B(t), t \geq 0$ are continuous functions of t.

*Translating to Finance: stock prices move in a continuous fashion. There are no jumps or discontinuities."
The Model in R_T

- It is more convenient to work in the log-return space:

$$R_T = \ln S_T - \ln S_0,$$

or equivalently,

$$S_T = S_0 e^{R_T}$$

- Using the model for S_T, we get

$$R_T = \left(\mu - q - \frac{1}{2} \sigma^2 \right) T + \sigma \sqrt{T} \epsilon_T,$$

- Most of the terms are familiar to us:
 - $(\mu - q) T$ is the expected growth rate, ex dividend, over time T.
 - $\sigma \sqrt{T}$ is the stock return volatility over time T.
 - ϵ_T is a standard normal (inherited from the Brownian motion).

- The extra term of $-\frac{1}{2} \sigma^2 T$ is called the Ito’s term. It needs to be there because the transformation from S_T to R_T involves taking a log, which is a non-linear (concave) function, of the random variable S_T.

Financial Markets, Day 2, Class 3
Options and Black-Scholes Implied Volatility
Jun Pan 17 / 38
The Payoff of a Call Option: \((S_T - K) \times \mathbb{1}_{S_T > K}\)

\[\mathbb{1}_{S_T > K} = 1 \text{ if } S_T > K \text{ and zero otherwise.}\]
By now, we have a dynamic model for the stock price \(S_T \). We also know the payoff function of a call option: \((S_T - K)1_{S_T > K}\).

We are now ready to calculate the market value, \(C_t \), of this call option at any given time \(t \) before the expiration date \(T \).

We do so by arbitrage pricing. Recall that in obtaining the CAPM pricing relation, we used *equilibrium pricing*, where mean-variance investors optimize their utility functions, and the equity and bond markets clear.

In Finance, when it comes to valuation, there are just two approaches: equilibrium pricing and arbitrage pricing.
The key insight of arbitrage pricing is very simple: replication.

A security offers me a stream of random payoffs:
- If I can replicate that cash flow (no matter how random they might be), then the price tag equates the cost of replication.
- Simple? In reality, it is difficult to find such exact replications.
- This makes sense: Why do we need a security that can be replicated?

An option offers a random payoff at the time of expiration T:
- The most important insight: dynamic replication.
- The limitation: the replication is done under the Black-Scholes model.
- The pricing formula is valid if the assumptions of the model are true.
Risk-Neutral Pricing

- Risk-neutral pricing is a widely adopted tool in arbitrage pricing.
- Our model in the return space:

 \[
 P\text{-measure: } R_T = \left(\mu - q - \frac{1}{2} \sigma^2 \right) T + \sigma \sqrt{T} \epsilon_T.
 \]

- In risk-neutral pricing, we bend the reality by making the stock grow instead at the riskfree rate \(r \):

 \[
 Q\text{-measure: } R_T = \left(r - q - \frac{1}{2} \sigma^2 \right) T + \sigma \sqrt{T} \epsilon_T^Q.
 \]

- Risk-neutral pricing: cash flows are discounted by the riskfree rate \(r \) and expectations are done under the Q-measure:

 \[
 C_0 = E^Q \left(e^{-rT} (S_T - K) 1_{S_T > K} \right).
 \]
Pricing a Stock

- Consider the S&P 500 index and assume zero dividend \(q = 0 \). The index’s final payoff is \(S_T \). How much are you willing to pay for it today? Of course, \(S_0 \).

- Under P-measure:
 \[
e^{-\mu T} E^P(S_T) = e^{-\mu T} S_0 e^{\mu T} = S_0
\]

- Under Q-measure:
 \[
e^{-r T} E^Q(S_T) = e^{-r T} S_0 e^{r T} = S_0
\]

- Pricing using a Risk-neutral investor:
 \[
e^{-r T} E^P(S_T) = e^{-r T} S_0 e^{\mu T} = S_0 e^{(\mu - r) T}
\]

- Risk-neutral pricing does not mean pricing using a risk-neutral investor.
Pricing a Call Option

- Let C_0 be the present value of a European-style call option on S_T with strike price K. Using risk-neutral pricing:

$$C_0 = E^Q \left(e^{-rT} (S_T - K) 1_{S_T > K} \right)$$

$$= e^{-rT} E^Q (S_T 1_{S_T > K}) - e^{-rT} K E^Q (1_{S_T > K})$$

- Let’s go directly to the solution (again assume $q = 0$ for simplicity):

$$C_0 = S_0 N(d_1) - e^{-rT} K N(d_2),$$

where $N(d)$ is the cumulative distribution function of a standard normal.

- Comparing the terms in blue, we have $N(d_2) = E^Q (1_{S_T > K})$, which is $\text{Prob}^Q (S_T > K)$, the probability that the option expires in the money under the Q-measure.

- Comparing the terms in green: $N(d_1) = e^{-rT} E^Q \left(\frac{S_T}{S_0} 1_{S_T > K} \right)$.

Understanding d_2 and d_1:

\[
d_1 = \frac{\ln (S_0/K) + (r + \sigma^2/2) T}{\sigma \sqrt{T}}; \quad d_2 = \frac{\ln (S_0/K) + (r - \sigma^2/2) T}{\sigma \sqrt{T}}
\]

- The model for S_T under Q-measure is $S_T = S_0 e^{R_T}$ with
 \[
 Q\text{-measure: } R_T = \left(r - \frac{1}{2} \sigma^2 \right) T + \sigma \sqrt{T} \epsilon_T^Q
 \]

- We can verify that $N(d_2)$ indeed gives us $\text{Prob}^Q (S_T > K)$: the probability that the option expires in the money under the Q-measure.

- What about $N(d_1)$? With $E(S_T 1_{S_T > K})$, it calculates the expectation of S_T only when $S_T > K$. This calculation is not required for exams.

- If you like, you can think of $N(d_1)$ as $\text{Prob}^{QQ} (S_T > K)$, where
 \[
 QQ\text{-measure: } R_T = \left(r + \frac{1}{2} \sigma^2 \right) T + \sigma \sqrt{T} \epsilon_T^{QQ}
 \]
The Black-Scholes Formula:

- The Black-Scholes formula for a call option (bring dividend back),
 \[C_0 = e^{-qT} S_0 \, N(d_1) - e^{-rT} K \, N(d_2) \]
 \[d_1 = \frac{\ln (S_0/K) + (r - q + \sigma^2/2) \, T}{\sigma \sqrt{T}} \]
 \[d_2 = \frac{\ln (S_0/K) + (r - q - \sigma^2/2) \, T}{\sigma \sqrt{T}} \]

- Put/call parity is model free. Holds even if the Black-Scholes model fails,
 \[C_0 - P_0 = e^{-qT} S_0 - e^{-rT} K. \]
 Empirically, this relation holds well in the data and is similar in spirit to the arbitrage activity between the futures and cash markets.

- Using put/call parity, the Black-Scholes pricing formula for a put option is:
 \[P_0 = -e^{-qT} S_0 \, (1 - N(d_1)) + e^{-rT} K \, (1 - N(d_2)) \]
 \[= -e^{-qT} S_0 \, N(-d_1) + e^{-rT} K \, N(-d_2) \]
At-the-Money Options (assume $q = 0$)

- For an at-the-money option, whose strike price is $K = S_0 e^{rT}$

$$C_0 = P_0 = S_0 \left[N \left(\frac{1}{2} \sigma \sqrt{T} \right) - N \left(-\frac{1}{2} \sigma \sqrt{T} \right) \right]$$

- Recall that $N(d)$ is the cdf of a standard normal,

$$N(d) = \int_{-\infty}^{d} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx$$

- So the pricing formula can be further simplified to

$$\frac{C_0}{S_0} = \frac{P_0}{S_0} = \int_{-\frac{1}{2} \sigma \sqrt{T}}^{\frac{1}{2} \sigma \sqrt{T}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx \approx \frac{1}{\sqrt{2\pi}} \sigma \sqrt{T},$$

which works well for small $\sigma \sqrt{T}$. For large $\sigma \sqrt{T}$ (volatile markets or long-dated options), non-linearity becomes important and this approximation is imprecise.
ATM Options: $d_1 = \frac{1}{2} \sigma \sqrt{T}$ and $d_2 = -\frac{1}{2} \sigma \sqrt{T}$
ATM Options as a Linear Contract on $\sigma\sqrt{T}$

Approximation: $C_0/S_0 = P_0/S_0 \approx \sigma\sqrt{T}/\sqrt{2\pi}$
The Black-Scholes Option Implied Volatility:

- At time 0, a call option struck at K and expiring on date T is traded at C_0. At the same time, the underlying stock price is traded at S_0, and the riskfree rate is r.

- If we know the market volatility σ at time 0, we can apply the Black-Scholes formula:

$$C_0^{\text{Model}} = \text{BS}(S_0, K, T, \sigma, r, q)$$

- Volatility is something that we don’t observe directly. But using the market-observed price C_0^{Market}, we can back it out:

$$C_0^{\text{Market}} = C_0^{\text{Model}} = \text{BS}(S_0, K, T, \sigma^I, r, q).$$

- If the Black-Scholes model is the correct model, then the Option Implied Volatility σ^I should be exactly the same as the true volatility σ.
Example 1: Option Quotes from CBOE (Oct 2011):

- The current index level is at 1200.86, down -23.72 (or 1.94%) from the day before.
- The *near-term* and *near-to-the-money* call option is the “SPX1122J1200-E” contract, which is traded at $13.40 bid and $16.90 ask. The mid-quote price is $15.15. (The bid/ask spread is $3.5 and the percentage bid/ask spread is 23%.)
- The last transaction price is $15.00, down $16.70 (or 52.68%) from the day before. There were 22,631 such contracts traded and the open interest (or number of option contracts outstanding) is 130,393.
Back out the option implied volatility:

<table>
<thead>
<tr>
<th>S_0</th>
<th>K</th>
<th>T</th>
<th>r</th>
<th>q</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200.86</td>
<td>1200</td>
<td>5/365</td>
<td>0.0024</td>
<td>0.02</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>C_0 or P_0</td>
<td>S_0</td>
<td>K</td>
<td>T</td>
<td>r</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Call</td>
<td>15.00</td>
<td>1200.86</td>
<td>1200</td>
<td>5/365</td>
<td>0.0024</td>
</tr>
<tr>
<td>Put</td>
<td>14.40</td>
<td>1200.86</td>
<td>1200</td>
<td>5/365</td>
<td>0.0024</td>
</tr>
<tr>
<td>Call</td>
<td>38.00</td>
<td>1200.86</td>
<td>1200</td>
<td>34/365</td>
<td>0.0024</td>
</tr>
<tr>
<td>Put</td>
<td>42.00</td>
<td>1200.86</td>
<td>1200</td>
<td>34/365</td>
<td>0.0024</td>
</tr>
</tbody>
</table>
Data Synchronization Issues

- Notice that in our calculation of the Black-Scholes implied volatility, we assume that the index options are traded at exactly the same time as the underlying index (which was marked at 1200.86).
- In practice, they are marked as “Last Sale,” and we actually do not know when the last sale took place for each option.
- So to be precise, we need to have the time stamp of each option transaction and then use the time stamp to retrieve the underlying index level at exactly the same time. CBOE offer such transaction level data, but it is expensive.
- The trading hours for SPX options are 8:30am-3:15pm Chicago time, while the NYSE hours are 9:30am-4:00pm New York time.
Put/Call Parity

- Notice also that put/call parity is violated by close to 4 dollars for the November 1200 contracts. In this market, put/call parity holds pretty well. In other words, it has to be a data issue.

- If we are confident that the paired call/put options (the same time to expiration and the same strike price) are traded at exactly the same time, then we can actually use put/call parity to back out the underlying index level (instead of relying on the underlying market).

- According to CBOE, the VIX index measured at close is 33.39 and the VXO index measured at close is 31.40.
Example 2: Option Quotes from CBOE (Oct 2005):

- The current index level is at 1195.90, up 4.41 from the day before.
- The *near-term* and *near-to-the-money* call option is the “05 Oct 1195” contract, which is traded at $13.10 bid and $14.30 ask. The mid-quote price is $13.70.
- The last transaction price is $13.50, up $1 from the day before.
- There were 3524 such contracts traded and the open interest (or number of option contracts outstanding) is 2212.
- The total dollar trading volume for this Oct contract is $13.7 \times 100 \times 3524 = $4.8m.
Back out the option implied volatility:

<table>
<thead>
<tr>
<th>S_0</th>
<th>K</th>
<th>T</th>
<th>r</th>
<th>q</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1195.90</td>
<td>1195</td>
<td>15/365</td>
<td>0.04</td>
<td>0.02</td>
<td>?</td>
</tr>
</tbody>
</table>

![Graph showing the relationship between call option price and sigma]
Some Details:

- October contracts expire on Oct. 22, which is the Saturday after the third Friday of the month. The option trading took place on Oct. 7, which is 15 calendar days away from the expiration date.
- The assumptions of $r = 4\%$ and $q = 2\%$ are approximations. For longer-dated options, assumptions on the riskfree rate and dividend yield become more important.
- In Excel, you can back out the implied volatility using a solver.
- We can perform the same exercise on put options to obtain put option implied volatility.
Bring the Black-Scholes Model to the Data

- The key assumptions of the model: constant volatility, continuous price movements, and log-normal distribution.
- The data: S&P 500 index options of different levels of moneyness and time to expiration.
- The basic tool: the Black-Scholes Option Implied Volatility.