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Outline

Volatility models and market risk measurement.
Estimating volatility using financial time series:

▶ SMA: simple moving average model (traditional approach).
▶ EWMA: exponentially weighted moving average model (RiskMetrics).
▶ ARCH and GARCH models (Nobel Prize).

EWMA for covariances and correlations.
Portfolio volatility and Value-at-Risk.
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The Aggregate Stock Market

It is pervasive, the single most important risk factor in the equity
world.
It yields a positive risk premium, but the risk premium is difficult to
measure with precision because of

▶ the “high” level of stock market volatility
▶ and the limited length of the historical data.

There is some evidence that the expected returns are time varying.
The autocorrelation of the aggregate stock returns is slightly positive,
and the dividend-to-price ratio has some predictability for future stock
returns.
Overall, only a small portion of future stock returns can be predicted
(low R-squared’s), and much of the uncertainty is unpredictable.
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The Volatility of the Aggregate Stock Market

Historical data can be used to measure volatility with much better
precision. Between risk and return, risk is something we can collect
more information about.
In fact, we can learn about market volatility not only from the
historical stock market data (backward looking), but also from
derivatives prices (forward looking).
Academics have made much progress in both directions, and
practitioners have adopted many of the ideas developed by academics.
We will study three volatility estimators:

▶ SMA: simple moving average model (traditional approach).
▶ EWMA: exponentially weighted moving average model (RiskMetrics).
▶ ARCH and GARCH models (Nobel Prize).
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The Importance of Measuring Market Volatility

Portfolio managers performing optimal asset allocation.
Risk managers assessing portfolio risk (e.g., Value-at-Risk).
Derivatives investors trading non-linear contracts with values linked
directly to market volatility.
Increasingly, the level of market volatility (e.g., VIX) has become a
market indicator (“the fear gauge”) watched closely by almost all
institutional investors, including those who are not trading directly in
the U.S. equity or U.S. equity derivatives markets.
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Modern Finance
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The Evolution of an Investment Bank
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Derivatives Losses by Non-Financial Corporations in 1990s

Orange County: $1.7 billion, leverage (reverse repos) and structured
notes
Showa Shell Sekiyu: $1.6 billion, currency derivatives
Metallgesellschaft: $1.3 billion, oil futures
Barings: $1 billion, equity and interest rate futures
Codelco: $200 million, metal derivatives
Proctor & Gamble: $157 million, leveraged currency swaps
Air Products & Chemicals: $113 million, leveraged interest rate and
currency swaps
Dell Computer: $35 million, leveraged interest rate swaps
Louisiana State Retirees: $25 million, IOs/POs
Arco Employees Savings: $22 million, money market derivatives
Gibson Greetings: $20 million, leveraged interest rate swaps
Mead: $12 million, leveraged interest rate swaps
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Measuring Market Risk

By the early 1990s, the increasing activity in securitization and the
increasing complexity in the financial instruments made the trading
books of many investment banks too complex and diverse for the
chief executives to understand the overall risk of their firms.
Market risk management tools such as Value-at-Risk are ways to
aggregate the firm-wide risk to a set of numbers that can be easily
communicated to the chief executives. By the mid-1990s, most Wall
Street firms have developed risk measurement into a firm-wide
system.
Daily estimates of market volatility, along with correlations across
financial assets, constitute the key inputs to Value-at-Risk. JP
Morgan’s RiskMetrics uses exponentially weighted moving average
(EWMA) model to estimate the volatilities and correlations of over
480 financial time series in order to construct a variance-covariance
matrix of 480x480.
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Equity Markets around the World
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FX Markets
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Money Market Rates
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Government Bonds
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Interest Rate Swaps
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Commodities
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Estimating Volatility using Financial Time Series

SMA: simple moving average model (traditional approach).
EWMA: exponentially weighted moving average model (RiskMetrics).
ARCH and GARCH models (Nobel Prize).
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Daily Returns on the S&P 500 Index
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The Simple Moving Average Model

Unlike expected returns, volatility can be measured with better
precision using higher frequency data. So let’s use daily data.
Some have gone into higher frequency by using intra-day data. But
micro-structure noises such as bid/ask bounce start to dominate in
the intra-day domain. So let’s not go there in this class.
Suppose in month t, there are N trading days, with Rn denoting n-th
day return. The simple moving average (SMA) model:

σ =

√√√√ 1

N

N∑
n=1

(Rn)
2

To get an annualized number: σ×
√
252. (252 trading days per year).
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Whether or not to take out µ?

The industry convention is such that (Rt − µ)2 is replaced by R2
t in

the volatility calculation.
The reason is that, at daily frequency, µ2 is too small compared with
E(R2). Recall, µ is several basis points while σ is close to 1%.
So instead of going through the trouble of doing E(R2)− µ2, people
just do E(R2).
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Volatility Estimated using SMA model
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How Precise are the SMA Volatility Estimates?
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What about SMA Mean Estimates?
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Why does Volatility Change over Time?

If the rate of information arrival is time-varying, so is the rate of price
adjustment, causing volatility to change over time.
The time-varying volatility of the market return is related to the
time-varying volatility of a variety of economic variables, including
inflation, unemployment rate, money growth and industrial
production.
Stock market volatility increases with financial leverage: a decrease in
stock price causes an increase in financial leverage, causing volatility
to increase.
Investors’ sudden changes of risk attitudes, changes in market
liquidity, and temporary imbalance of supply and demand could all
cause market volatility to change over time.
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Time-varying Volatility and Business Cycles
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SMA vs. Option-Implied
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VXO vs. VIX
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Exponentially Weighted Moving Average Model

The simple moving average (SMA) model fixes a time window and
applies equal weight to all observations within the window.
In the exponentially weighted moving average (EWMA) model, the
more recent observation carries a higher weight in the volatility
estimate.
The relative weight is controlled by a decay factor λ.
Suppose Rt is today’s realized return, Rt−1 is yesterday’s, and Rt−n is
the daily return realized n days ago. Volatility estimate σ:

Equally Weighted Exponentially Weighted√√√√ 1

N

N−1∑
n=0

(Rt−n)
2

√√√√(1− λ)

N−1∑
n=0

λn (Rt−n)
2
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EWMA Weighting Scheme
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SMA and EWMA

Source: RiskMetrics—Technical DocumentFinancial Markets, Day 2, Class 2 Time-Varying Volatility Jun Pan 29 / 54



SMA and EWMA Estimates after a Crash

Source: J.P.Morgan/Reuters RiskMetrics — Technical Document, 1996
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Computing EWMA recursively

One attractive feature of the exponentially weighted estimator is that
it can be computed recursively.
You will appreciate this convenience if you have to compute the
EWMA volatility estimator in Excel.
Let σt be the EWMA volatility estimator using all the information
available on day t − 1 for the purpose of forecasting the volatility on
day t.
Moving one day forward, it’s now day t. After the day is over, we
observe the realized return Rt.
We now need to update our EWMA volatility estimator σt+1 using the
newly arrived information (i.e. Rt). It turns out that we can do so by

σ2
t+1 = λσ2

t + (1− λ)R2
t
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What about the First Observation?

The recursive formula has to start from the beginning:

σ2
2 = λσ2

1 + (1− λ)R2
1

So what to use for σ1?
In practice, the choice of σ1 does not matter in any significant way
after running the iterative process long enough:

σ2
3 = λσ2

2 + (1− λ)R2
2

= λ2 σ2
1 + (1− λ)

(
λR2

1 + R2
2

)
σ2
4 = λσ2

3 + (1− λ)R2
3

= λ3 σ2
1 + (1− λ)

(
λ2R2

1 + λR2
2 + R2

3

)
. . .

σ2
t = λt−1 σ2

1 + (1− λ)
(
λt−2R2

1 + . . .+ R2
t−1

)
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The First Observation?

A good idea is to have the iterative process run for a while (say a few
months) before recording volatility estimates.
(Prof. Pan’s Choice:) I like to set σ1 =std(R), which is the
“unconditional” or sample standard deviation of R. The logic is that
if I don’t have any information about σ1 at the beginning of the
volatility estimation, I might as well use the unconditional estimate of
σ.
(The industry practice:) It is typical to set σ2

2 = R2
1 and start the

recursive process from σ3. The rationale is that σ1 is unknowable and
the only data we have at time 1 is R1. So R2

1 is our best estimate for
σ2
2. This approach is adopted by most of the practitioners, including

RiskMetrics.
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Dating Convention for σt

The dating convention adopted by most people:

σ2
t+1 = λσ2

t + (1− λ)R2
t

The rationale is that this σ is estimated for the purpose of forecasting
the next period’s volatility. So it should be dated as σt+1.
(Prof. Pan’s Choice:) I actually like to use

σ2
t = λσ2

t−1 + (1− λ)R2
t

The rationale is that at time t, I am forming an estimate σt using all
of the information available to me at time t.
I will always use the main-stream approach and date it by σt+1.
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Decay factor, Strong or Weak?

A strong decay factor (that is, small λ) underweights the far away
events more strongly, making the effective sample size smaller.
A strong decay factor improves on the timeliness of the volatility
estimate, but that estimate could be noisy and suffers in precision.
On the other hand, a weak decay factor improves on the smoothness
and precision, but that estimate could be sluggish and slow in
response to changing market conditions.
So there is a tradeoff.
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Fast and Medium Decay
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Medium and Slow Decay
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Picking the Optimal Decay Factor

RiskMetrics sets λ = 0.94 in estimating volatility and correlation. One
of their key criteria is to minimize the forecast error.
We form σt+1 on day t in order to forecast the next-day volatility. So
after observing Rt+1, we can check how good σt+1 is in doing its job.
This leads to the daily root mean squared prediction error

RMSE =

√√√√ 1

T

T∑
t=1

(
R2

t+1 − σ2
t+1

)2
The deciding factor of RMSE is our choice of λ. For my running
example (daily S&P 500 index returns 2007-2010):

λ 0.80 0.9075∗ 0.94 0.97
RMSE 8.1844 8.0124 8.0544 8.2444
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Maximum Likelihood Estimation

The gold standard in any estimation is maximum likelihood
estimation, because it is the most efficient method. So let’s see what
MLE has to say about the optimal λ.
We assume that conditioning on the volatility estimate σt+1, the
stock return Rt+1 is normally distributed:

f (Rt+1|σt+1) =
1√

2πσt+1

e
−

R2t+1

2σ2
t+1

Take natural log of f:

ln f (Rt+1|σt+1) = − lnσt+1 −
R2

t+1

2σ2
t+1

I dropped 2π since it will not affect anything we will do later.
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Maximum Likelihood Estimation

We now add them up to get what econometricians call log-likelihood
(llk):

llk = −
T∑

t=1

(
lnσt+1 +

R2
t+1

2σ2
t+1

)
The only deciding factor in llk is our choice of λ. It turns out that the
best λ is the one that maximizes llk.
In practice, we take -llk and minimize -llk instead of maximizing llk.
For my running example (daily S&P 500 index return 2007-2010), I
find the optimal λ that minimizes -llk is 0.9320. Not exactly the same
as the optimal λ of 0.9075 that minimizes RMSE, but these two are
reasonably close.
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The Surface of Planet MLE
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ARCH and GARCH models

The ARCH model, autoregressive conditional heteroskedasticity, was
proposed by Professor Robert Engle in 1982. The GARCH model is a
generalized version of ARCH.
ARCH and GARCH are statistical models that capture the
time-varying volatility:

σ2
t+1 = a0 + a1 R2

t + a2 σ2
t

As you can see, it is very similar to the EWMA model. In fact, if we
set a0 = 0, a2 = λ, and a1 = 1− λ, we are doing the EWMA model.
So what’s the value added? This model has three parameters while
the EWMA has only one. So it offers more flexibility (e.g., allows for
mean reversion and better captures volatility clustering).
But I think EWMA is good enough for us, for now.

Financial Markets, Day 2, Class 2 Time-Varying Volatility Jun Pan 42 / 54



The Nobel-Prize Winning Model
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EWMA Covariances and Correlations

Our goal is to create the variance-covariance matrix for the key risk
factors influencing our portfolio.
For the moment, let’s suppose that there are only two risk factors
affecting our portfolio.
Let RA

t and RB
t be the day-t realized returns of these two risk factors.

The covariance between A and B:

covt+1 = λ covt + (1− λ)RA
t × RB

t

And their correlation:

corrt+1 =
covt+1

σA
t+1σ

B
t+1

,

where σA
t+1 and σB

t+1 are the EWMA volatility estimates.
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The Negative Correlation between RM and ∆VIX

Monthly returns RM
t on the stock market portfolio is highly negatively

correlated with monthly changes in VIX: -69.41%.
Now let’s apply our EWMA approach, which will give us a time-series
of correlations between these two risk factors.
We see an interesting time-series pattern of the negative correlation
between daily stock returns and daily changes in VIX.
In particular, this correlation has become more negative in recent
years.
(CBOE started to offer futures trading on VIX on March 26, 2004.)
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The Negative Correlation between RM and ∆VIX
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Stock Price and VIX
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Calculating Volatility for a Portfolio

Suppose that our portfolio has two important risk factors, whose daily
returns are RA and RB, respectively.
Performing risk mapping using individual positions, the portfolio
weights on these two risk factors are wA and wB.
Let’s focus only on the risky part of our portfolio and leave out the
cash part. So let’s normalize the weights so that wA + wB = 1. Let’s
assume our risk portfolio has a market value of $100 million today.
We apply EWMA to get time-series of their volatility estimates σA

t
and σB

t , and correlation estimates ρAB
t . And our portfolio volatility is

σ2
t = w2

A × (σA
t )

2 + w2
B × (σB

t )
2 + 2× wA × wB × ρAB

t × σA
t × σB

t

It is in fact easier to do this calculation using matrix operations,
especially when you have to deal with hundreds of risk factors.
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Variance-Covariance Matrix

We construct a variance-covariance matrix for risk factors A and B:

Σt =

(
(σA

t )
2 ρAB

t σA
t σ

B
t

ρAB
t σA

t σ
B
t

(
σB

t
)2 )

It is a 2×2 matrix, since we have only two risk factors. If you have 100
risk factors in your portfolio, then you will have a 100×100 matrix.
For example, in JPMorgan’s RiskMetrics, 480 risk factors were used.
In Goldman’s annual report, 70,000 risk factors were mentioned.
A risk manager deals with this type of matrices everyday and the
dimension of the matrix can easily be more than 100, given the
institution’s portfolio holdings and risk exposures.
Notice the timing: for σt, we use all returns up to day t − 1 for the
purpose of forecasting volatility for day t.
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Portfolio Volatility

Let’s write our weights in vector form, time stamped by today, t-1,

wt−1 =

(
wA

t−1

wB
t−1

)
Our portfolio volatility is

σ2
t =

(
wA

t−1 wB
t−1

)
×

(
(σA

t )
2 ρAB

t σA
t σ

B
t

ρAB
t σA

t σ
B
t

(
σB

t
)2 )

×
(

wA
t−1

wB
t−1

)
Using the notation we’ve developed so far, we can also write

σ2
t = w′

t−1 × Σt × wt−1 ,

which involves using mmult and transpose in Excel.
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Tail Distributions

Let σ be the daily volatility estimate of the portfolio. Then the 95%
one-day VaR is,

VaR = portfolio value × 1.645× sigma

The 99% tail event corresponds to a -2.326σ move away from the
mean. The 95% tail event corresponds to -1.645σ.
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Portfolio VaR

Assuming the market value of our risk portfolio is $100 million, the
one-day loss in portfolio value associated with the 5% worst-case
scenario is

$100M × 1.645× σ

Suppose that we have only one risk factor, which is the S&P 500
index. If today is a normal day with an average volatility around 1%,
then the one-day 95% VaR is $1.645M. For the same portfolio value,
if the reported VaR is much higher than $1.645M, then today must
be a volatile day.
Overall, if we fix our VaR estimate to a certain horizon, say daily,
then the main drivers to the VaR estimates are: the market value and
volatility of our portfolio. A reduction in VaR could be caused by a
reduction in the market value (either by active risk reduction or
passive loss in market value) or a reduction in market volatility.
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Key Asset Classes for Market Risk Management

What JP Morgan RiskMetrics had to offer (free of charge) back in
1996 gives a good overall picture of what kind of asset classes are
involved in calculating the market risk exposure of an investment
bank.
RiskMetrics data sets: Two sets of daily estimates of future volatilities
and correlations of approximately 480 rates and prices, with each data
set totaling 115,000+ data points. One set is for computing
short-term trading risks, the other for medium term investment risks.
The data sets cover foreign exchange, government bond, swap, and
equity markets in up to 31 currencies. Eleven commodities are also
included.
This set of data (equity, currency, interest rates, and commodity) is
very much the domain of Market Risk Management. In addition,
Credit and Liquidity Risk Management have become increasingly
important. For this, good data, models, and talents on credit and
liquidity are in need.
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Broad Asset Classes for Market Risk Management
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