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Introduction

This paper studies the asset pricing implication of imprecise
information about rare events.

• Rare events: small probability, sudden occurrence, high impact.

• Models with rare events are hard to estimate with precision.

• How do investors deal with this aspect of model uncertainty?

• Testable implications — some securities are more sensitive to
rare events than others.
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Related Literature

• The conceptual differentiation between risk and uncertainty:
Knight (1921) and Ellsberg (1961).

• Multi-prior expected utility: Gilboa and Schmeidler (1989),
Epstein and Wang (1994), Chen and Epstein (2000).

• Robust control: Anderson, Hansen and Sargent (2000),
Maenhout (1999), Uppal and Wang (2000).

• Other possible explanations for the differential pricing of
diffusive and jump risks:

– crash aversion [Bates (2001)]

– disappointment aversion [Gul (1991)]

– loss aversion [Kahneman and Tversky (1979)]

– Bayesian learning about the jump component (?)
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An Economy with Rare Events

A pure-exchange economy with one representative agent and one
perishable consumption good. The aggregate endowment of the
consumption good [Naik and Lee (1990)]:

dYt = μYt dt+ σYt dBt +
(
eZt − 1

)
Yt− dNt .

• The diffusive risk is controlled by the Brownian shock dB

• The jump timing is dictated by the Poison process Nt

• Given arrival at time t, the jump size is controlled by Zt
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The Reference Model

• The model parameters:

– The mean growth rate μ and volatility σ without jumps.

– The jump-arrival intensity λ.

– The mean percentage jump size k = E (exp(Z) − 1).

– The variance of jump size σ2
J = var(Z).

• For the purpose of making investment and consumption
choices, the investor needs to know the values of the model
parameters, which he can estimate using the exisiting data.

• Let P be this reference model that best fits the existing data.
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Imprecise Knowledge about Rare Events

• The jump component of the reference model is not reliable:

– typically noisy due to the infrequent nature of jumps.

– could be biased because of the “Peso” problem.

• Knowing that the reference model P is not entirely reliable, the
investor decides to “test drive” alternative models.

• Not any models — only those that are different in the jump
component. In particular, we focus on the imprecise knowledge
about the jump-timing λ and jump-size k.
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The Set of Alternative Models

• Each alternative model P (ξ) is defined relative to the reference
model P by its Radon-Nikodym derivative ξT = dP (ξ)/dP :

dξt =
(
ea+b Zt−b μJ− 1

2 b2σ2
J − 1

)
ξt− dNt − (ea − 1)λ ξt dt .

• For example, if a = b = 0, then ξ = 1 and the alternative model
is the same as the reference model.

• A more general pair a, b ∈ R produces an alternative model
that is different from the reference model. But the difference is
only with respect to the jump likelihood and magnitude:

λξ = λ ea and kξ = (1 + k) eb σ2
J − 1 .

• This collection of alternative models is denoted by P.
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Robust Control for Rare Events

• Let Ut be the investor’s utility at time t. In a standard setting,

Ut =
c1−γ
t

1 − γ
+ e−ρEt (Ut+1) ,

taking expectation with respect to the reference model P .

• Knowing that P is not reliable, the investor thinks about
tomorrow differently:

e−ρ inf
P (ξ)∈P

{
Eξ

t (Ut+1) +
1
φ
ψ (Ut) E

ξ
t

[
h

(
ln
ξt+1

ξt

)]}

– evaluates his future prospect under all possible P (ξ) ∈ P.

– penalizes his choice of P (ξ) by its deviation from P .

– the penalty function: h(x) = x+ β (ex − 1) .

• The constant φ > 0 captures his degree of uncertainty aversion.
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The Equilibrium Equity Premium

The total equity premium has three components:

1. the diffusive risk premium = γ σ2

2. the jump risk premium = λ k − λ̄ k̄

λ̄ = λ (1 + k)−γ e
1
2 γ(1+γ) σ2

J , k̄ = (1 + k) e−γ σ2
J − 1 .

3. the rare event premium = λ̄ k̄ − λQ kQ

λQ = λ̄ ea∗−γ b∗σ2
J , kQ =

(
1 + k̄

)
eb∗σ2

J − 1 ,

where a∗ and b∗ are the optimal parameters determined by φ.
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Observationally Equivalent?

As a rough calibration, let’s set the diffusive volatility σ = 15%,
jump arrival intensity λ = 1/3, and random jump sizes with mean
μJ = −1% and standard deviation σJ = 4%.

The observation that the total equity premium is 8% per year can
be supported by various pairs of γ and φ:

• an investor with γ = 3.47 and φ = 0.

• an investor with γ = 3.15 and φ = 10.

• an investor with γ = 2.62 and φ = 20.

• . . . .
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For all these cases, our model implies very different compositions of
the total equity premium:

risk premia uncertainty total equity

φ γ diffusive jump premium premium

0 3.47 7.80% 0.20% 0 8%

10 3.15 7.09% 0.19% 0.72% 8%

20 2.62 5.91% 0.15% 1.94% 8%
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Testable Implications on Options

• Unlike equity, options are non-linear in nature, with different
sensitivities to diffusive shocks and jumps.

• In fact, by offering options with different degrees of moneyness
and maturity, the options market provides a rich spectrum of
such differential sensitivities.

• For this reason, the options market provides an ideal place for
us to test our model’s prediction on rare event premia.
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Conclusion

• We modified the standard pure-exchange economy by adding
jumps as rare events, and by allowing the representative agent
to perform robust control as a precaution against possible
model mis-specification with respect to rare events.

• Provided an explicitly solved equilibrium, and showed that the
total equity premium has three components: the diffusive risk
premium, the jump risk premium, and the rare event premium.

• Examined the testable implications of our model on the options
market, and documented the importance of the uncertainty
aversion toward rare events in explaining the options data.

Jun Pan 15


