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1. Introduction

It has been widely documented that stock returns exhibit both stochastic volatility and
jumps. The importance of such risk factors arises not only from time-series studies of stock
prices,1 but also from cross-sectional studies of stock options [Bakshi, Cao, and Chen (1997);
Bates (2000)]. This brings us to ask an important question that was left unanswered by past
studies: To what extent are such risk factors, namely volatility and jump risks, priced in the
financial market? In particular, what is the market price of the jump risk? Is the jump risk
priced differently from the diffusive risk? Answers to these questions have a direct impact on
investors’ decision-making, and could also shed some light on how investors react to various
types of uncertainty.

In this paper, we address these issues by focusing on the risk premia implicit in the
S&P 500 index options. Although there is a rich body of empirical studies on options, our
understanding of the risk premia in options is still limited. In particular, the role of jump-risk
premia in option pricing has not been examined to date.2 In light of this, we adopt the Bates
(2000) model, which extends the stochastic volatility model of Heston (1993) by incorporating
state-dependent price jumps. Under such a setting, the S&P 500 index returns are affected
by three distinctively different risk factors: (1) the diffusive price shocks, (2) the price jumps,
and (3) the diffusive volatility shocks. The dynamic properties of such risk factors and, more
important for our purpose, the market prices of such risk factors determine how options
on the S&P 500 index are priced. To facilitate our analysis of how various risk factors are
priced, we introduce a parametric pricing kernel to price all three risk factors, including the
volatility risk and the jump risk. An important feature of the jump-risk premium considered
here is that it is allowed to depend on the market volatility.

To estimate the price dynamics simultaneously with the parametric pricing kernel, we
adopt an integrated approach to the time-series data on the S&P 500 index and options. Such
an integrated approach has long been advocated in the literature, but its implementation has
only been recent. For example, in a nonparametric setting, Äıt-Sahalia, Wang, and Yared
(2001) compare the risk-neutral densities estimated separately from spot prices and option
prices. In a parametric setting, Chernov and Ghysels (2000) use joint time-series data to
estimate the Heston (1993) model.

Our integrated approach differs from those adopted by earlier studies in that we device an
“implied-state” generalized method of moments (IS-GMM) estimation strategy to take full
advantage of the analytical tractability of the Bates (2000) model. For a given set ϑ of model
parameters, we proxy for the unobserved volatility, Vt, with an option-implied volatility, V ϑ

t ,
inverted from the time-t spot price, St, and a near-the-money short-dated option price,
Ct, using the model-implied option-pricing formula. Access to the option-implied stochastic
volatility, V ϑ, allows us to explore the joint distribution of spot and option prices by focusing
directly on the dynamic structure of the state variables: the stock price S and the stochastic

1See, for example, (Jorion 1989), Andersen, Benzoni, and Lund (1998), Eraker, Johannes, and Polson
(2000), Chernov, Gallant, Ghysels, and Tauchen (1999, 2000), and the references therein.

2In pure-diffusion settings, the role of volatility-risk premia has been examined by Guo (1998), Benzoni
(1998), Chernov and Ghysels (2000), Poteshman (1998), and Bakshi and Kapadia (2001). These studies,
however, do not address the issue of jump-risk premia nor do they provide insight on the relative importance
of the premia for jump and volatility risks.
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volatility V . This approach is particularly attractive in our setting, as the conditional
moment-generating function of (S, V ) is explicitly known, while the conditional distribution
of (S,C) could be complicated because of the nonlinearity of option pricing.

Under such an integrated approach, the role of risk premia arises naturally as we attempt
to reconcile the dynamics implied by the joint time series {St, Ct} of the S&P 500 index and
the near-the-money short-dated option prices. For example, for a model in which neither
jump risk nor volatility risk is priced, strong inconsistency arises between the level of volatility
observed in the spot market and that implied, through the model, by the options market.
In particular, the option-implied volatility is too high to be rationalized by the ex-post
realized volatility observed in the spot market. Similar findings are reported by Jackwerth
and Rubinstein (1996) in the setting of the Black and Scholes (1973) model. One natural
explanation for this bias is that option prices contain a risk-premium component associated
with additional risk factors such as stochastic volatility and jumps. Allowing for a volatility-
risk premium, and fitting the stochastic-volatility model of Heston (1993) to the joint time-
series data {St, Ct}, we find a significant volatility-risk premium, as well as an improvement
in goodness-of-fit. Overall, however, the model is still rejected by the joint data. Moreover,
the volatility-risk premium thus estimated from the joint time-series data implies an explosive
volatility process under the “risk-neutral” measure, leading to severely overpriced long-dated
options.

Given the poor performance of the model with volatility-risk premia, an alternative
approach is to introduce jump and jump-risk premium to the Heston (1993) model. In-
deed, fitting the Bates (2000) model (with a state-dependent jump-risk premium) to the
joint time-series data {St, Ct}, we find a significant premium for jump risk. In contrast
to the case with volatility-risk premium, the model is not rejected by the joint time-series
data, and the estimated level of jump-risk premium does not result in any distortion of
the long-dated option prices. Finally, when allowing both types of risk premia to reconcile
simultaneously the spot and option dynamics, we find that the state-dependent jump-risk
premium dominates by far the volatility-risk premium.

In addition to the joint time-series data {St, Ct} that have so far been the focus of our
model estimation and empirical analyses, we also observe on each date t a cross-section of
options with varying degrees of moneyness and maturities. This rich set of options data
provides a challenging test of our empirical results. Using the model parameters estimated
exclusively from the joint time series {St, Ct} of one spot and one option, we find that the
Bates (2000) model explains the cross-sectional options data surprisingly well, capturing,
in particular, the changes over time of the “smirk” patterns that are exhibited in options
with different moneyness. Again, the key component here is the state-dependent jump-risk
premium, under which small negative jumps in the actual dynamics are perceived to be
significantly more negative in the “risk-neutral” measure. The importance of such negative
“risk-neutral” jumps in capturing the “smirk” patterns has also been documented by Bakshi,
Cao, and Chen (1997) and Bates (2000). We reach to the same conclusion, however, in
different ways. While their model estimates (the “risk-neutral” part) are obtained by fitting
directly to the entire cross-sectional options, ours are estimated using the time series {St, Ct}
of only one spot and one option. While their empirical implication stays at the level of the
“risk-neutral” dynamics, ours goes one step further by noting that volatility “smirks” are
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primarily due to investors’ fear of large adverse price jumps. Moreover, given that the jump-
risk premium is, in fact, estimated using near-the-money option prices, our results show that
such fear of jump risk is reflected not only in deep out-of-the-money (OTM) puts, but in
near-the-money options as well.

To understand the pricing kernel that links the two markets, the spot and options data
can be exploited in alternative ways. Under a consumption-based asset pricing setting,
Jackwerth (2000) and Äıt-Sahalia and Lo (2000) uncover the risk-aversion coefficient for
a representative agent by comparing the risk-neutral distribution implied by index options
with the actual distribution estimated from the time series of index. In the same spirit,
Rosenberg and Engle (1999) estimate an empirical pricing kernel. In this paper, we rely
instead on an arbitrage-free asset pricing model with a parametric pricing kernel that prices
diffusive return shocks, volatility shocks, and jump risks. Different risk factors would have
different impacts on option prices, and the compensation for their uncertainty could also
be reflected in very different ways through option pricing. By allowing investors to have
different risk attitudes toward the three types of risk factors, our parametric approach to the
pricing kernel allows us to investigate such differences. Indeed, our empirical results indicate
that investors might have distinctly different risk attitudes toward jump risk and diffusive
risk.

Finally, it should be noted that our empirical results build on the premise that the
options market is fully integrated with the spot market, sharing the same price dynamics
and the same market prices of risks. If the options market is somehow segmented from
the spot market because of some option-specific factors such as liquidity, it then becomes
impossible to identify the parametric pricing kernel in our current setting. In a related
issue, Jackwerth and Rubinstein (1996) raise the possibility of a “peso” component (extreme
and rare events) in option prices, which is found to be important by Äıt-Sahalia, Wang,
and Yared (2001). Given that jumps are inherently infrequent, and our sample period is
relatively short, it is empirically hard to separate the “peso” hypothesis from that of jump-
risk premia. In principle, however, these two hypotheses are fundamentally different. The
“peso” explanation implies that OTM put options are priced with premia because of the
potential occurrence of extreme events, which have not yet been materialized. By contrast,
the risk-premia explanation emphasizes investors’ aversion to such extreme events —- options
(especially OTM put options) are priced with premia not only because of the likelihood and
magnitude of such rare events, but also because of investors’ aversion to such events.

The remainder of this paper is organized as follows. Section 2 specifies the Bates (2000)
model, the parametric pricing kernel, and the option-pricing formula. Section 3 outlines
the integrated approach adopted in this paper and provides details on the estimation strat-
egy. Section 4 describes the data. Section 5 summarizes the empirical findings. Section 6
concludes the paper. Technical details are provided in appendices.

2. The model

We adopt the Bates (2000) model to characterize the stock return dynamics. As summarized
in Section 2.1, this model introduces three sources of uncertainty to the underlying price
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dynamics: (1) diffusive return shocks, (2) volatility shocks, and (3) jump risks.3 The market
prices of these risk factors are characterized in Section 2.2. A brief description of option
pricing under this dynamic setting is presented in Section 2.3. Details about the state-price
density that gives rise to the market prices of risks are given in Appendix A, and additional
information about option pricing is provided in Appendix B.

2.1. The data-generating process

We fix a probability space (Ω,F , P ) and an information filtration (Ft) satisfying the usual
conditions [see, for example, Protter (1990)], and let S be the ex-dividend price process of a
stock that pays dividends at a stochastic proportional rate q. Adopting the model of Bates
(2000), we assume the following data-generating process for the stock price S

dSt = [rt − qt + ηsVt + λVt (µ− µ∗)]St dt+
√
VtSt dW

(1)
t + dZt − µSt λVt dt (1)

dVt =κv(v̄ − Vt) dt+ σv

√
Vt

(
ρ dW

(1)
t +

√
1 − ρ2 dW

(2)
t

)
, (2)

where r is a stochastic interest-rate process, W =
[
W (1) ,W (2)

]>
is an adapted standard

Brownian motion in R
2, and Z is a pure-jump process.

This model captures two important features of the stock return dynamics, namely stochastic
volatility and price jumps, and still provides analytical tractability for option pricing and
model estimation. First, stochastic volatility is modeled by the autonomous process V de-
fined by Eq. (2), which is a one-factor “square-root” process with constant long-run mean
v̄, mean-reversion rate κv, and volatility coefficient σv.

4 This volatility specification, in-
troduced by Heston (1993), allows the “Brownian” shocks to price S and volatility V to be
correlated with constant coefficient ρ, capturing an important stylized fact that stock returns
are typically negatively correlated with changes in volatility [Black (1976)].

Second, this model captures price jumps via the pure-jump process Z, which contains
two components: random jump-event times and random jump sizes. The jump-event times
{Ti : i ≥ 1} arrive with a state-dependent stochastic intensity process {λVt : t ≥ 0} for
some non-negative constant λ.5 Given the arrival of the i-th jump event, the stock price
jumps from S(Ti−) to S(Ti−) exp(Us

i ), where Us
i is normally distributed with mean µJ

and variance σ2
J , independent of W , of inter-jump times, and of U s

j for j 6= i. Intuitively,
the conditional probability at time t of another jump before t + ∆t is, for some small ∆t,
approximately λVt ∆t and, conditional on a jump event, the mean relative jump size is
µ = E(exp(Us) − 1) = exp(µJ + σ2

J/2) − 1. Combining the effects of random jump timing
and sizes, the last term µSt λVt dt in Eq. (1) compensates for the instantaneous change in
expected stock returns introduced by the pure-jump process Z.

Given that the pure-diffusion model of Heston (1993) cannot explain the tail-fatness of
the stock return distribution (Andersen, Benzoni, and Lund (1998)), nor can it explain the

3To be more precise, this model involves five sources of uncertainty. As it becomes clear in Section 2.1,
the two additional shocks are associated with the riskfree rate and the dividend yields.

4It should be noted that we call the variance V the volatility, which is typically referred to as the standard
deviation of returns. This change of terminology should not cause any confusion.

5This jump model is of the Cox-process type. Conditional on the path of V , jump arrivals are Poisson
with time-varying intensity {λVt : t ≥ 0}. See, for example, Brémaud (1981).
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“smirkiness” exhibited in the cross-sectional options data [Bakshi, Cao, and Chen (1997);
Bates (2000)], the extension to include jumps is well motivated. It should be emphasized,
however, that our main motivation is to study how such jump risks are priced and, in
particular, their role in reconciling the spot and option dynamics. As will become evident in
the next section, we choose the linear specification λV of jump-arrival intensity to allow for
a state-dependent jump-risk premium, i.e., to allow for the possibility that when the market
is more volatile, the jump-risk premium implicit in option prices becomes higher.6

Focusing on the drift component of the stock price dynamics, we see that the stock
price appreciates with interest rate rt, pays out dividend rate qt, and appreciates with two
risk-premium components: ηs Vt and λVt (µ− µ∗), which are associated with the premia for
“Brownian” return risks and jump risks, respectively. We postpone a formal discussion on
the risk-premium components to Section 2.2.

The short interest-rate process r is of the type modeled by Cox, Ingersoll, and Ross
(1985). Specifically, r and the dividend-rate process q are defined by

drt = κr(r̄ − rt) dt+ σr

√
rt dW

(r)
t

dqt = κq(q̄ − qt) dt+ σq
√
qt dW

(q)
t ,

(3)

where W (r) andW (q) are independent adapted standard Brownian motions in R, independent
also of W and Z. Similar to the stochastic-volatility process V , both r and q are autonomous
one-factor square-root processes with constant long-run means (r̄ and q̄), mean-reversion
rates (κr and κq), and volatility coefficients (σr and σq).

We choose to treat r and q as stochastic processes, as opposed to time-varying constants,
in order to accommodate stochastic interest rates and dividend yields, which vary in the
data, and whose levels indeed affect even short-dated option prices. Our formulation of r
and q, however, precludes possible correlation between the two, as well as more plausible
and richer dynamics for the short-rate process. But for the short-dated options used to fit
our model, the particular stochastic nature of interest rates r and dividend yields q plays a
relatively minor role.

Finally, one limitation of our volatility specification is that it does not allow volatility
to jump, a feature that is found to be important in stock returns [Eraker, Johannes, and
Polson (2000)]. In an issue that is related, Jones (1999) points out that, compared with the
constant elastic variance (CEV) model, the square-root specification does not allow volatility
to increase fast enough. The severity of these limitations will be investigated in Section 5.4
by diagnostic tests on the volatility dynamics. Their implications on our understanding of
the jump-risk premia will also be discussed. Overall, to maintain a parsimonious model is

6It should be noted that to maintain a parsimonious model, we leave out the constant component in
jump arrival intensity. Using stock return data alone, evidence in support of state-dependent jump arrival
intensity is documented by Johannes, Kumar, and Polson (1998), while the studies of Chernov, Gallant,
Ghysels, and Tauchen (1999) and Andersen, Benzoni, and Lund (1998) emphasize the importance of the
constant component. For the purpose of reconciling spot and option dynamics, we find the state-dependent
component to play a dominating role. The constraint of zero constant component will be formally tested in
Section 5.1. In addition to the linear specification, the case of nonlinear dependency of the arrival intensity
on V seems interesting, so is the case of state-dependent jump sizes. For analytical tractability, however,
these specifications are not considered here.
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the main reason why volatility jumps are not considered here, and the CEV specification is
not incorporated for analytical tractability.7

2.2. The market prices of risks

In contrast to the complete market setting of Black and Scholes (1973), the additional sources
of uncertainty, in particular, the random jump sizes, introduced in our setting make the
market incomplete with respect to the riskfree bank account, the underlying stock, and the
finite number of options contracts. Consequently, the state-price density (or pricing kernel)
is not unique. Our approach is to focus on a candidate pricing kernel that prices the three
important sources of risks: diffusive price shocks, jump risks, and volatility shocks.8 Given
their mild effects on short-dated option prices, the interest-rate and dividend-rate risks are
not priced in this paper.

For exposition purpose, we present in this section the “risk-neutral” price dynamics
defined by our candidate pricing kernel, leaving a detailed description of the pricing kernel in
Appendix A. Letting Q be the equivalent martingale measure associated with our candidate
pricing kernel, we assign the market prices of risks so that both r and q have the same joint
distribution under Q as under the data-generating measure P , and the dynamics of (S, V )
under Q are of the form:

dSt = [rt − qt] St dt+
√
Vt St dW

(1)
t (Q) + dZQ

t − µ∗St λVt dt , (4)

dVt = [κv (v̄ − Vt) + ηvVt] dt+ σv

√
Vt

(
ρ dW

(1)
t (Q) +

√
1 − ρ2 dW

(2)
t (Q)

)
, (5)

where W (Q) =
[
W (1)(Q) , W (2)(Q)

]
is a standard Brownian motion under Q. [See Ap-

pendix A for a formal definition of W (Q).] The pure-jump process ZQ has a distribution
under Q that is identical to the distribution of Z under P defined in Eq. (1), except that
under Q, the jump arrival intensity is {λVt : t ≥ 0} for some non-negative constant λ, and
the jump amplitudes Us

i is normally distributed with Q-mean µ∗
J and Q-variance σ2

J . In
other words, under the risk-neutral measure, the conditional probability at time t of another
jump before t+∆t is approximately λVt ∆t and, conditional on a jump event, the risk-neutral
mean relative jump size is µ∗ = EQ (exp(Us) − 1) = exp (µ∗

J + σ2
J/2)−1. Following the same

discussion for the data-generating process, we see that the last term µ∗St λVt dt in Eq. (4)
is the compensator for the pure-jump process ZQ under the risk-neutral measure. Conse-
quently, the instantaneous risk-neutral expected rate of stock return is the short interest rate
r minus the dividend payout rate q.

7Alternative models also include the log-normal model of Hull and White (1987). In fact, using high-
frequency stock return data, Andersen, Bollerslev, Diebold, and Ebens (2001) suggest that volatility is
best described as a log-normal process. One disadvantage of such a model, however, is that once the
negative correlation between stock returns and volatility is incorporated, option pricing becomes intractable.
Moreover, Benzoni (1998) shows that for the purpose of option pricing, there is no qualitative difference
between the log-normal model and the square-root model.

8An alternative approach is preference-based equilibrium pricing, for which the state-price density arises
from marginal rates of substitution evaluated at equilibrium consumption streams. See Lucas (1978). Also,
see Naik and Lee (1990) for an extension to jumps, Pham and Touzi (1996) for an extension to stochastic
volatility, and Detemple and Selden (1991) for an analysis of the interactions between options and stock
markets.
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Comparing the specification of the risk-neutral dynamics of (S, V ) with that of the data-
generating process, one can obtain an intuitive understanding of how different risk factors
are priced. Focusing first on the market prices of jump risks, we see that by allowing the
risk-neutral mean relative jump size µ∗ to be different from its data-generating counterpart
µ, we accommodate a premium for jump-size uncertainty. Similarly, a premium for jump-
timing risk can be incorporated if we allow the coefficient λ∗ for the risk-neutral jump-arrival
intensity to be different from its data-generating counterpart λ. In this paper, however, we
concentrate mainly on the risk premium for jump-size uncertainty, while ignoring the risk
premium for jump-timing uncertainty by supposing λ∗ = λ. With this assumption, all
jump risk premia will be artificially absorbed by the jump-size risk premium coefficient
µ−µ∗. The time-t expected excess stock return compensating for the jump-size uncertainty
is λVt (µ− µ∗).

We adopt this approach mainly out of empirical concern over our ability to separately
identify the risk premia for jump timing and jump size. For example, the arrival intensity
of price jumps, as well as the mean relative jump size µ, could be difficult to pin down using
the S&P 500 index data under a GMM estimation approach. In Section 5.2, this constraint
of λ∗ = λ will be relaxed to gauge the relative importance of premia for jump-timing and
jump-size risks.

Premia for the “conventional” return risks (“Brownian” shocks) are parameterized by
ηsVt for a constant coefficient ηs. This is similar to the risk-return trade-off in a CAPM
framework. Premia for “volatility” risks, on the other hand, are not as transparent, since
volatility is not directly traded as an asset. Because volatility is, itself, volatile, options
may reflect an additional volatility risk premium. Volatility risk is priced via the extra term
ηvVt in the risk-neutral dynamics of V in Eq. (5). For a positive coefficient ηv, the time-t
instantaneous mean growth rate of the volatility process V is, therefore, ηvVt higher under
the risk-neutral measure Q than under the data-generating measure P . Since option prices
respond positively to the volatility of the underlying price in this model, option prices are
increasing in ηv.

Our specification of risk premia can also be relaxed. For example, the linear form of the
volatility-risk premia ηvVt could be relaxed by introducing the polynomial form η0 + η1Vt +
η2V

2
t + · · · + ηlV

l
t , for some constant coefficients η0, η1, η2, . . . , ηl. Our specification rules

out the possibility that η0 6= 0, because it could imply non-diminishing risk premia as the
volatility approaches to zero. The quadratic term η2V

2
t seems to be an interesting case, but

is not examined in this paper for analytical tractability.

2.3. Option pricing

Let θr = [κr , r̄ , σr]
>, and θq = [κq , q̄ , σq]

> denote the model parameters for the interest-rate
process r and the dividend-rate process q, respectively, and let ϑ denote the rest of the model
parameters:

ϑ = (κv, v̄, σv, ρ, λ, µ, σJ , η
s, ηv, µ∗) . (6)

Let Ct denote the time-t price of a European-style call option on S, struck at K and
expiring at T = t+ τ . Taking advantage of the affine structure of (lnS, V, r, q) and using the
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transform-based approach [see, for example, Stein and Stein (1991), Heston (1993), Scott
(1997), Bates (2000), Bakshi, Cao, and Chen (1997), Bakshi and Madan (2000), and Duffie,
Pan, and Singleton (2000)], we have

Ct = EQ
t

[
exp

(
−
∫ T

t

ru du

)
(ST −K)+

]
= St f

(
Vt, ϑ, rt, qt, τ,

K

St

)
, (7)

where an explicit formulation for f is given in Appendix B, and where for notational sim-
plicity, we omit the explicit dependency of f on θr and θq.

3. Estimation

In this section, we focus on how to estimate the parametric model specified in Section 2
using the joint time-series data {Sn, Cn} on spot and options. For notational convenience,
we summarize the model parameters by ϑ, as defined in Eq. (6). Treating the parameters
θr and θq associated with the interest-rate process r and the dividend-rate process q as
given,9 our focus in this section is on the estimation of the true model parameter ϑ0, which
is assumed to live in a compact parameter space Θ.

Given that options are nonlinear functions of the state variables, the joint dynamics of the
market observables Sn and Cn could be complicated, irrespective of the analytical tractability
of the state variables (S, V ). In order to take advantage of the analytical tractability of the
state variables, we propose an “implied-state” generalized method of moments (IS-GMM)
approach. The basic idea of our approach is to take advantage of the option-pricing relation
Cn = Snf(Vn, ϑ0) by inverting, for a given set of model parameters ϑ, a proxy V ϑ

n for the
unobserved volatility Vn through Cn = Snf(V ϑ

n , ϑ). Using V ϑ
n , we can focus directly on

the dynamic structure of the state variables (S, V ). In our setting, the affine structure of
(lnS, V ) allows us to calculate the joint conditional moment-generating function of stock
returns and volatility in closed-form, which, in turn, yields a rich set of moment conditions.
Replacing Vn by V ϑ

n in the moment conditions, we can perform the usual GMM estimation,
the only difference being that one of the state variables V ϑ is parameter-dependent, hence
the term “implied-state” GMM.

In the remainder of this section, we will first provide a detailed description of the IS-
GMM estimators and then discuss the selection of the optimal moment conditions. The large
sample properties of the IS-GMM estimators are established in Appendix C. A recursive
formula for calculating the joint conditional moments of return and volatility is given in
Appendix D.

9In practice, we first obtain maximum-likelihood (ML) estimates of θr and θq using time series of interest
rates and dividend yields, respectively. We then treat the ML estimates of θr and θq as true parameters
and adopt the “implied-state” GMM estimation strategy outlined here. Any loss of efficiency as a result of
this approach is expected to be small, because the particular stochastic natures of r and q play a relatively
minor role in pricing the short-dated options.
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3.1. “Implied-state” GMM estimators

Fixing some time interval ∆, we sample the continuous-time state process {St, Vt, rt, qt} at
discrete times {0,∆, 2∆, . . . , N∆} and denote the sampled process {Sn∆, Vn∆, rn∆, qn∆} by
{Sn, Vn, rn, qn}. Letting

yn = lnSn − lnSn−1 −
∫ n∆

(n−1)∆

(ru − qu) du (1)

denote the date-n “excess” return,10 it is easy to see that the transition distribution of
{yn, Vn} depends only on the parameter vector ϑ, and not on θr or θq. Suppose, for the
moment, that both the stock return yn and volatility Vn can be observed. Our estimation
problem then falls into a standard GMM setting. Specifically, we can select nh moment
conditions such that

Eϑ0
n−1

[
h
(
y(n,ny), V(n,nv), ϑ0

)]
= 0 , (2)

where ϑ0 is the true model parameter, h : Rny × R
nv
+ ×Θ → Rnh is some test function to be

chosen,11 Eϑ
n−1 denotes F(n−1)∆-conditional expectation under the transition distribution of

(y, V ) associated with parameter ϑ, and, for some positive integers ny and nv,

y(n,ny) =
[
yn, yn−1, . . . , yn−ny+1

]>
and V(n,nv) = [Vn, Vn−1, . . . , Vn−nv+1]

>

denote the “ny-history” of y and the “nv-history” of V , respectively.
What distinguishes our situation from that of a typical GMM is that we do not observe

the stock volatility Vn directly. We can, nevertheless, take advantage of the market-observed
spot price Sn and option price Cn, and exploit the option-pricing relation

Cn = Sn f(Vn, ϑ0, rn, qn, τ, k) , (3)

for an option with maturity τ and strike-to-spot ratio k = K/Sn. If the true model parameter
ϑ0 is known, we can, in fact, back out the true volatility Vn from this pricing relation using
the market observables. For any other set of model parameters ϑ ∈ Θ, however, we can still
back out a proxy V ϑ

n for the unobserved volatility Vn by solving V ϑ
n from

Cn = Sn f(V ϑ
n , ϑ, rn, qn, τ, k) . (4)

The concept of backing out volatility from option prices is not novel, a prominent example
being the Black-Scholes implied volatility. Our version of option-implied volatility V θ

n differs
from that of Black-Scholes in that ours is parameter dependent. Suppose that both volatility

10In order to construct the excess-return process y defined by Eq. (1), we need to observe, at any time t,
the continuous-time processes r and q. In practice, however, we observe r and q at a fixed time interval ∆. In
our estimation, we use ỹn = ln Sn − ln Sn−1 − (rn−1 − qn−1)∆ as a proxy for yn. For a relatively short time
interval ∆ (our data are weekly), the effect of this approximation error on our results is assumed to be small.
Alternative proxies for

∫ n∆

(n−1)∆
(rt − qt) dt, such as (rn − qn)∆ and [(rn + rn−1) /2 − (qn + qn−1) /2]∆, are

also considered. The empirical results reported in this paper are robust with respect to all three proxies.
11We assume that h is continuously differentiable and integrable in the sense of Eq. (2).
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risk and jump risk are priced in the true model ϑ0: η
v 6= 0 and µ∗ 6= µ. If we start from

a parameter set ϑ′ that excludes jump risk and volatility risk from being priced, then the
option-implied volatility V ϑ′

n will be very different from the true volatility Vn. Alternatively,
the closer ϑ is to the true model parameter ϑ0, the more accurate is the corresponding
option-implied volatility V ϑ

n . When V ϑ
n is evaluated at the true model parameter ϑ0, we

retrieve the true volatility Vn.
Given the option-implied volatility V ϑ

n , we can now construct the sample analogue of the
moment condition Eq. (2) by

GN(ϑ) =
1

N

∑
n≤N

h
(
y(n,ny), V

ϑ
(n,nv), ϑ

)
, (5)

and define the “implied-state” GMM estimator ϑ̂N by

ϑ̂N = arg min
ϑ∈Θ

GN(ϑ)> WN GN(ϑ) , (6)

where {Wn} is an (Fn∆)-adapted sequence of nh×nh positive semi-definite distance matrices.
This “implied-state” GMM approach raises several econometric issues. For example, one

inherent feature of the exchange-traded options is that certain contract variables, such as
time τ to expiration and strike-to-spot ratio k, vary from one observation to the next. This
time dependency in contract variables could potentially introduce a time dependency in the
option-implied volatility, inadvertently resulting in an additional layer of complexity. In
Appendix C, we show that, under mild technical conditions, the IS-GMM estimators are,
indeed, consistent and asymptotically normal.

This IS-GMM approach falls into a group of estimation strategies for state variables that
can only be observed up to unknown model parameters.12 For example, Renault and Touzi
(1996) propose an MLE-based two-step iterative procedure; Pastrorello, Renault, and Touzi
(1996) apply simulated method of moments (SMM) to time series of spot and option prices
separately; Chernov and Ghysels (2000) adopt the SNP/EMM empirical strategy developed
by Gallant and Tauchen (1998) and apply a simultaneous time-series estimation of spot and
option prices; and, more recently, Eraker (2000) applies a Markov Chain Monte Carlo based
approach to joint time-series data on spot and options.13

Compared with these alternative approaches, the main motivation for us to adopt the
IS-GMM approach is to take advantage of the affine structure of our dynamic model. Specif-
ically, it allows us to focus directly on the joint dynamics of the state variables (S, V ), rather
than the market observables (Sn, Cn), which could be highly nonlinear functions of the state

12This econometric setting arises in many other empirical applications. For example, zero- and coupon-
bond yields, exchange-traded interest-rate option prices, over-the-counter interest-rate cap and floor data,
and swaptions can all, in principle, be employed to invert for an otherwise-unobserved multi-factor state
variable that governs the dynamics of the short interest rate process. As another example, an increasingly
popular approach in the literature (on defaultable bonds, in particular) is to model the uncertain mean
arrival rate of economic events through some stochastic intensity process. (See, for example, Duffie and
Singleton (1999) and references therein.) If there exist market-traded instruments whose values are linked
to such events, then the otherwise-unobserved intensity processes can be “backed out.”

13One advantage of the MCMC approach is that jumps are treated as an additional state variable, making
it convenient to draw inferences about jump occurrences.
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variables. This is particularly attractive in our specification, because the affine structure of
(lnS, V ) provides a closed-form solution for the joint conditional moment-generating func-
tion of the stock return and volatility (y, V ) (Duffie, Pan, and Singleton (2000)), from which
the joint conditional moments of (y, V ) can be calculated up to any desired order. As will
be demonstrated in the subsequent section, such conditional moments can be used directly
or indirectly (as optimal instruments) to build moment conditions. Moreover, they provide
a rich set of diagnostic tests, allowing an explicit examination of how well various model
constraints, e.g., constraints on the risk premium, fit with the joint time-series data of spot
and option prices.

Finally, although our approach relies on one option Cn per day to back out V ϑ
n , it does

not preclude the use of multiple options. In fact, in Section 5.2, we introduce, in addition to
the time series {Cn} of near-the-money short-dated option prices, a time series {CITM

n } of
in-the-money call options to help identify jump-risk premium simultaneously with volatility-
risk premium. But our approach does assume that this particular time series of option prices
{Cn} is measured precisely. This is partially the motivation for us to use near-the-money
short-dated options, since they typically are the most liquid options.

3.2. “Optimal” moment selection

This section provides a set of “optimal” moment conditions that takes advantage of the
explicitly known moment-generating function of return and volatility (y, V ), which is defined,
for any uy and uv in R, by

En

[
exp (uy yn+1 + uv Vn+1)

]
= φ(uy, uv, Vn) . (7)

Given the explicitly known moment-generating function φ (see Appendix D), the joint con-
ditional moments of returns and volatility can be derived by

En

(
yi

n+1V
j
n+1

)
=
∂(i+j)φ(uy, uv, Vn)

∂iuy ∂juv

∣∣∣∣
uy=0 , uv=0

, i, j ∈ {0, 1, . . .} . (8)

Direct computation of the derivatives in Eq. (8), albeit straightforward, can nonetheless be
cumbersome for higher orders of i and j. Appendix D offers an easy-to-implement method
for calculating En(yi

n+1V
j
n+1), recursively in i and j, up to arbitrary orders.

We let M1(Vn, ϑ) = Eϑ
n (yn+1), M2(Vn, ϑ) = Eϑ

n

(
y2

n+1

)
, M3(Vn, ϑ) = Eϑ

n

(
y3

n+1

)
, and

M4(Vn, ϑ) = Eϑ
n

(
y4

n+1

)
denote the first four conditional moments of return, let M5(Vn, ϑ) =

Eϑ
n (Vn+1) and M6(Vn, ϑ) = Eϑ

n

(
V 2

n+1

)
denote the first two conditional moments of volatility,

and let M7(Vn, ϑ) = Eϑ
n (yn+1Vn+1) denote the first cross moment of return and volatility.

We start with the following moment conditions:

Eϑ
n−1(εn) = 0 , εn = [εy1

n , εy2
n , εy3

n , εy4
n , εv1

n , εv2
n , εyv

n ]> , (9)
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where

εy1
n = yn −M1(Vn−1, ϑ) , εy2

n = y2
n −M2(Vn−1, ϑ)

εy3
n = y3

n −M3(Vn−1, ϑ) , εy4
n = y4

n −M4(Vn−1, ϑ)

εv1
n = Vn −M5(Vn−1, ϑ) , εv2

n = V 2
n −M6(Vn−1, ϑ)

εyv
n = yn Vn −M7(Vn−1, ϑ) .

(10)

This choice of moment conditions is intuitive and provides some natural and testable condi-
tions on certain lower moments and cross moments of y and V . But these are not the most
efficient moment conditions. In order to make them more efficient, we follow Hansen (1985)
and introduce the following conditional instruments:

Zn = D>
n ×

(
Covϑ

n(εn+1)
)−1

,

where Covϑ
n(εn+1) denotes the date-n conditional covariance matrix of εn+1 associated with

the parameter ϑ, and Dn is the (7 × nϑ) matrix with i-th row Di
n defined by

Di
n = −∂Mi(Vn, ϑ)

∂ϑ
− gϑ (cn, ϑ)

∂Mi(v, ϑ)

∂v

∣∣∣∣
v=Vn

, i = 1, 2, 3, 4 ,

Di
n = −∂Mi(Vn, ϑ)

∂ϑ
, i = 5, 6, 7 ,

(11)

where cn is the date-n option-to-spot ratio and gϑ(cn, ϑ) measures the sensitivity of the
date-n option-implied volatility V ϑ

n = g(cn, ϑ) to ϑ. [A formal definition of g is given in
Eq. (C1).] Intuitively, the “optimal” instrument Zn has two components: the conditional
covariance matrix Covϑ

n(εn+1) corrects for the conditional heteroskedasticity in the original
moment conditions εn+1, and the Jacobian Dn picks up the “conditional sensitivity” of εn+1

to the model parameters ϑ. Taking advantage of the analytical tractability of our model,
both components of Z can be explicitly derived.

The “optimal” moment conditions can, therefore, be calculated by14

Hn+1 = Zn εn+1 . (12)

Each element Hj
n+1 of the “optimal” observations Hn+1 =

(
H1

n+1 , . . . ,Hnϑ
n+1

)
is associated

with an element ϑj of the parameter vector ϑ. Intuitively, Hj
n+1 is the weighted sum of the

seven observations εn+1, normalized by the covariance matrix Covϑ
n(εn+1), with weights pro-

portional to the date-n “conditional sensitivity” of εn+1 to ϑj . Given this set H of “optimal”
observations, we can apply our implied-state-variable approach outlined in Section 6 by re-
placing the unobserved stochastic volatility Vn with the option-implied stochastic volatility
V ϑ

n .
Finally, it should be noted that the efficiency of this “optimal-instrument” scheme is

limited in that, in constructing D5, D6, and D7, we sacrifice efficiency by ignoring the
dependence of Vϑ on ϑ. We do, however, gain analytic tractability, because calculations
of the form Eϑ

n [gϑ(cn+1, ϑ)], Eϑ
n [Vn+1 gϑ(cn+1, ϑ)], and Eϑ

n [yn+1 gϑ(cn+1, ϑ)] would, indeed, be
challenging.

14Relative to full-information MLE, this approach sacrifices some efficiency by exploiting only a limited
portion of the distributional information contained in the moment-generating function. See also Singleton
(2001) and Liu (1997).
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4. Data

The joint spot and option data are from the Berkeley Options Data Base (BODB), a complete
record of trading activity on the floor of the Chicago Board Options Exchange (CBOE).

4.1. S&P 500 index and near-the-money short-dated options

We construct a time-series {Sn, Cn} of the S&P 500 index and near-the-money short-dated
option prices, from January 1989 to December 1996, with “weekly” frequency (every 5 trading
days). This joint time-series is plotted in Figure 1. The details of data collection are as
follows.

Black-Scholes Implied Volatility (%)

Weekly S&P 500 Index Returns (%)

5

10

15

20

25

30

2
4
6
8

0
−2
−4
−6
−8

89

89

90

90

91

91

92

92

93

93

94

94

95

95

96

96

97

97

Figure 1: Joint time series of weekly S&P 500 index returns and the near-the-money short-
dated option prices.

For each observation day, we collect all of the bid-ask quotes (on both calls and puts)
that are time-stamped in a pre-determined sampling window. The sampling window, always
between 10:00 a.m. and 10:30 a.m., varies from year to year. For example, it is set at 10:07
a.m. to 10:23 a.m. for all trading days in 1989; and at 10:14 a.m. to 10:16 a.m. for 1996. We
adjust the length of the sampling window to accommodate significant changes from year to
year in the trading volume of S&P 500 options. We also adjust the start time of the window
so that the center of the window is at 10:15 a.m.

Our objective is to have an adequate pool of options with a spectrum of expirations and
strike prices. For the n-th observation day, we first sort the options by time to expiration.
Among all available options, we select those with a time τn to expiration that is larger
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than 15 calendar days and as close as possible to 30 calendar days.15 From the pool of
options with the chosen time τn to expiration, we then select all options with a strike price
Kn nearest to the date-n average of the S&P 500 index. If the remaining pool of options,
with the chosen τn and Kn, contains multiple calls, we select one of these call options at
random. Otherwise, a put option is selected at random.16 By repeating this strategy for
each date n, we obtain a time-series {Cn} of option prices using the average of bid and
ask prices. A valuable feature of the CBOE data set is that for each option price Cn, we
have a record of the contemporaneous S&P 500 index price Sn. The combined time series
{Sn, Cn} is, accordingly, synchronized. The sample mean of {τn} is 31 days, with a sample
standard deviation of 9 days. The sample mean of the strike-to-spot ratio {kn = Kn/Sn} is
1.0002, with a sample standard deviation of 0.0067. The time series {τn, kn} is illustrated in
Figure 2.17

89

89

90

90

91

91

92

92

93

93

94

94

95

95

96

96

97

97

20

30

40

50

60

70

1.02

1

0.98

0.96

0.94

Year

Year

τ
(d

ay
s)

k

Figure 2: Time series of contract variables: time-to-expiration τ and strike-to-spot ratios k.

15Both time to expiration τn and sampling interval ∆ are annualized, using a 365-calendar-day year and
a 252-business-day year, respectively.

16We can use the put-call parity to convert the observed put price to that of a call option, or treat
the mixture of call and put options employing an additional contract variable. These two approaches are
equivalent for our estimation strategy.

17From September 11 to October 2, 1992, there is no October contract recorded in the BODB. This results
in the “spike” in τ on the top panel of Figure 2, because we have to use the November contracts for these
observation days. Near the end of 1995, the exchange did not adjust its grid of strike prices to reflect the
steady upward movement of the S&P 500 index. During this period, the highest strike price available was
well below the spot S&P 500 index. This results in the “dip” in the strike-to-spot ratio on the bottom panel
of Figure 2.
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4.2. Time series of in-the-money short-dated calls

On each date n, we select an in-the-money call CITM
n with the same maturity as the near-

the-money option Cn described above, but a different strike price. Among all of the possible
ITM call options (with strike price less than that of the near-the-money option Cn), we select
the one CITM

n with strike-to-spot ratio closest to 0.95. If there is no such ITM calls available,
we choose an OTM put, again with strike-to-spot ratio closest to 0.95, and then convert the
price to that of an ITM call using put/call parity. The sample mean of the strike-to-spot
ratio {kITM

n } is 0.952, with a sample standard deviation of 0.007.

4.3. Cross-sectional data on calls and puts

We select the 10 most and 10 least volatile days from the weekly sample between January
1989 and December 1996, as measured by the Black-Scholes implied volatility of {Cn}. For
a comparison group of medium-volatility days, we select the ten successive days at weekly
intervals between September 20, 1996 and November 22, 1996. The average Black-Scholes
implied volatility (BS vol) for the days of high, medium, and low volatilities are 25.1%,
13.6%, and 8.7%, respectively.

On each date n, we collect all bid and ask quotes of those call and put options that are
time-stamped between 10:00 a.m. and 11:00 a.m. For 1996, the time-window is reduced to
10:10am–10:20am, due to a surge in trading volume in 1996. Options with fewer than 15
days to expiration are discarded. This set of cross-sectional data is then filtered through
the Black-Scholes option-pricing formula to obtain the corresponding BS vol, discarding any
observation from which the BS vol cannot be obtained. There is a total of 11,434 observations
for the group of high-volatility days, 33,919 observations for the medium-volatility days, and
19,589 observations for the low-volatility days.

5. Empirical Results

The estimation results are organized as follows. Section 5.1 focuses on the relative impor-
tance of jump- and volatility-risk premia in reconciling the joint time series {Sn, Cn} of spot
and option prices. Section 5.2 details a simultaneous estimation of the premia for jump and
volatility risks, and evaluates the relative magnitude of these two types of risk premia, using
an additional time series {CITM

n } of in-the-money short-dated call options. Section 5.3 ex-
tends the analysis to the cross-sectional option data, providing further evidence for jump-risk
premia. Finally, Section 5.4 examines possible model mis-specifications and their implica-
tions on our findings of jump-risk premia. The estimation results associated with the risk-free
rates r and dividend yields q, as well as the results of a Monte-Carlo study, are presented in
Appendix E.

5.1. Reconciling spot and option dynamics

In order to examine the role of risk premia in reconciling spot and option dynamics, we focus
on three nested models of Eqs. (1) to (5):
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• The SVJ0 model: ηv = 0.

• The SV model: λ = 0.

• The SV0 model: λ = 0 and ηv = 0.

These nested models are chosen to represent three different risk-premium structures: jump-
risk premia (SVJ0), volatility-risk premia (SV), and no risk premia (SV0).

For all three models, we perform joint estimations of their actual and risk-neutral dynam-
ics using the time series {Sn, Cn} of the S&P 500 index and the near-the-money short-dated
option prices. (See data collection details in Section 4.1.) The estimation results are re-
ported in Table 1 and the results of goodness-of-fit tests are summarized in Table 2. The
goodness-of-fit tests are constructed directly from the heteroskedasticity-corrected version ε̃
of ε, defined by

ε̃ i
n =

ε i
n√

E(n−1)(ε i
n)2

, i ∈ {1, . . . , 7}.

We test the 7 moment conditions, En−1(ε̃n) = 0, both individually and jointly.18

Table 1: IS-GMM Estimates of Three Nested Models.

κv v̄ σv ρ ηs ηv λ µ σJ µ∗

7.1 0.0134 0.28 −0.52 3.1 ≡ 0 27.1 −0.3% 3.25% −18.0%
SVJ0

(1.9) (0.0029) (0.04) (0.07) (2.9) (11.8) (1.7%) (0.64%) ( 1.6%)
7.1 0.0137 0.32 −0.53 8.6 7.6 ≡ 0

SV
(2.1) (0.0023) (0.03) (0.06) (2.3) (2.0)
5.3 0.0242 0.38 −0.57 4.4 ≡ 0 ≡ 0

SV0
(1.9) (0.0044) (0.04) (0.05) (1.8)

Data: Weekly spot and options data, S&P 500 index, Jan. 1989 to Dec. 1996.

As summarized in Table 2, both the SV0 and SV models are strongly rejected by the
joint time-series data (with p-values of 10−10 and 10−5, respectively), while the SVJ0 model
is not rejected (associated p-value = 0.37). To gain some insights to this result, we focus
first on the SV0 model and on the moment condition

E(εy2
n ) = 0 with εy2

n = y2
n −M2

(
V ϑ

n−1, ϑ
)
,

which connects the realized squared return y2
n to its conditional expectation M2(V

ϑ
n−1, ϑ).

By a Taylor-expansion of M2(v, ϑ) over small time period ∆, we have M2(V
ϑ
n−1, ϑ) ≈ V ϑ

n−1∆,
which leads to εy2

n ≈ y2
n − V ϑ

n−1∆. For the SV0 model, the test statistics associated with

18The large-sample distribution of the test statistics is standard normal for the individual tests, and χ2

with n degrees of freedom for a joint test on n moment conditions. Appendix E provides further details on
large-sample distributions of such test statistics.
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Table 2: Goodness-of-Fit Tests

ε̃ SV0 SV SVJ0

y1 1.46 −0.59 0.27
y2 −3.98∗∗ −1.56 −0.60
y3 0.77 −0.29 −0.65
y4 −1.45 0.27 −0.36
v1 −1.91 1.80 0.95
v2 −2.28∗ 1.24 0.59

In
d
iv

id
u
al

T
es

ts
yv 2.47∗ −0.10 0.60

all y 28.2∗∗ 8.1 1.8
χ2(4) (10−5) (0.09) (0.77)
all v 9.1∗ 11.4∗∗ 3.2
χ2(2) (0.01) (0.003) (0.20)
all 59.9∗∗ 31.6∗∗ 7.6

J
oi

n
t

T
es

ts

χ2(7) (10−10) (10−5) (0.37)

∗ and ∗∗ indicate significance under a 5% and 1% test,
respectively. For individual tests, only the test statistics
(standard normal in large sample) are reported. The p-
values for the χ2 joint tests are reported in parentheses.

E(εy2
n ) is significantly negative, indicating that the volatility realized in the spot market is

significantly less than that observed in the options market (through the SV0 model).
One possible explanation is that the SV0 model has a very rigid risk-premium structure.

In particular, investors’ aversion to volatility uncertainty or jump risks is not incorporated.
To examine the role of these two types of risk premia, we next focus on the SV and SVJ0
models. Table 1 shows that the volatility-risk premium coefficient ηv is estimated to be
positive and significantly different from zero for the SV model,19 which is consistent with the
findings of Guo (1998), Benzoni (1998), Poteshman (1998), Bakshi and Kapadia (2001), and
Chernov and Ghysels (2000). Not examined in these studies or in the SV model is the role of
jump-risk premia. Indeed, the results for the SVJ0 model imply large and significant premia
for the jump-size uncertainty. Table 1 shows that the risk-neutral mean µ∗ of the relative
jump size is estimated to be −18%, while its counterpart µ for the data-generating process
is estimated to be −0.3%. (µ∗ − µ is estimated at −17.6%, with a standard error of 2.2%).
This implies that, when weighted by aversion to large price movements, negative jumps
are perceived to be more negative. Actual daily returns of comparable magnitude occurred

19Instead of testing the significance of the estimator for ηv, we can also perform a Lagrange-multiplier test
of the SV0 model against the SV model using the moment condition En[Hn+1(ηv)] = 0, where Hn+1(ηv)
denotes the “optimal” moment associated with ηv as described in Section 3.2. In particular, this test is of
the Lagrange-multiplier style in the sense that the moment condition En[Hn+1(ηv)] = 0, which is true under
the alternative (the SV model), is tested using the parameter estimates associated with the Null (the SV0
model). The SV0 model (with ηv = 0) is rejected against the SV model (p-value = 0.0002).
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only once, when the market jumped −23% on October 19, 1987. It seems, however, that
fear of such adverse price movements is reflected in option prices, through a large jump-risk
premium.20

A revisit to the goodness-of-fit test associated with E(εy2
n ) reveals that it is no longer

strongly violated for either the SV model or the SVJ0 model, suggesting that allowing for
risk premia does reconcile, to some extent, the tension between the spot and option prices
that arises in the SV0 model. This, however, does not imply that the risk premia implicit
in option prices can be explained equally well by the premia for volatility risk or those for
jump risk.
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Figure 3: On a medium-volatility day (November 22, 96), the SVJ0 model (with jump-risk
premia) is capable of pricing both short-dated and long-dated options, while the SV model
(with volatility-risk premia) severely over-prices long-dated options.

First, in contrast to the SVJ0 model, the SV model is still strongly rejected by the joint
time-series data (p-value = 10−5). Second, in contrast to the SVJ0 model, the estimated SV
model implies an explosive risk-neutral volatility process, and severely over-prices long-dated
options. To illustrate, we plot in Figure 3 near-the-money options with varying degrees
of maturities. The stars indicate the market observed prices, while the solid and dashed
lines indicate the SVJ0- and SV-model implied option prices, respectively. The spot-market
volatility is about 11% for this day, while the Black-Scholes implied-vol for the one-month

20It should be noted that because we have set the jump-timing risk premium λ∗−λ to zero, it is likely that
the estimated premium for jump-size risk, measured in terms of µ∗ − µ, has absorbed some risk regarding
timing risk. We postpone a discussion on this issue to the next section.
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contract is around 13%. Consistent with our earlier discussion, there is a gap between
the volatility measured directly from the spot market and that implied by option prices
(through either the Black-Scholes model or the SV0 model, which have essentially the same
risk-premium structure). Both the SVJ0 and SV models are able to explain this gap — one
by jump-risk premia and the other by volatility-risk premia. But their respective projections
on the long-dated options are very different. In particular, for the SV model to explain the
risk premia implicit in the one-month options, it requires a volatility-risk premium coefficient
ηv of such high magnitude that the estimated risk-neutral mean-reversion rate κ̂∗v = κ̂v −
η̂v is negative, implying an explosive risk-neutral volatility process. Although this is not
explicitly precluded by arbitrage arguments, it does cause the SV model to severely overprice
long-dated options, as illustrated in Figure 3. The jump-risk premia, on the other hand,
can explain the risk premia implicit in one-month options without distorting long-dated
options.21
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Figure 4: Different responsiveness to market volatility. The percentage risk premia measure
the amount of cents one has to pay for risk premia for every dollar invested in the one-month
at-the-money options. The market volatility is in terms of the Black-Scholes volatility.

Figure 4 illustrates another important difference between the two types of risk premia
considered in this paper. For short-dated options, the jump-risk premia respond quickly to

21Quite intuitively, the term structure of volatility-risk premia is very different from that for jump-risk
premia. In fact, it can be shown that as the maturity of an option approaches zero, the effect of volatility-risk
premia diminishes, while that for jump-risk premia does not. It is closely related to the fact that volatility
risk influences stock prices through (diffusive) Brownian motions.
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market volatility, while the volatility-risk premia do not. For instance, Figure 4 shows that
when the market volatility doubles from 10% to 20%, the percentage premium paid for jump
risk nearly doubles, while that for volatility risk increases only by a small amount. This
different responsiveness to the market volatility implies that volatility-risk premia under-
estimate the risk premia implicit in short-dated options during high-volatility periods, while
over-estimating during low-volatility periods. This partially explains why the SV model is
strongly rejected by the joint time-series data.

Overall, the SVJ0 model clearly dominates the pure diffusion models, demonstrating
the importance of the state-dependent jump-risk premia. We next examine the impact of
the zero volatility-risk premia constraint (ηv = 0) imposed by the SVJ0 model. Letting
Hn(ηv) denote the “optimal” moment associated with ηv, we test the SVJ0 model against
the alternative that ηv 6= 0. Using the moment condition E[Hn(ηv)] = 0, which is true under
the alternative, we perform a Lagrange-multiplier test of SVJ0. The SVJ0 model (that with
ηv = 0) is not rejected against the alternative that ηv 6= 0 at traditional confidence levels.
(p-value =0.55) This implies that introducing volatility-risk premia in addition to jump-risk
premia will not result in any significant improvement in the goodness of fit.

In our model specification, we assume that jump arrival intensity is λVt, leaving out the
possibility that there might be a constant component to the jump arrival intensity. We now
test the specification of λVt against the alternative λ0 + λVt, for some constant λ0. More
specifically, we let Hn(λ0) denote the “optimal” moment associated with λ0, and use the
moment condition E[Hn(λ0)] = 0, which is true under the alternative. We find that the
SVJ0 model is not rejected against the alternative that λ0 6= 0 at traditional confidence
levels.22 (p-value = 0.12) This result implies that between the two components in jump-risk
premia — one constant, the other state dependent, the state-dependent component plays a
far more important role in reconciling the joint time-series data. In fact, in our first attempt
to estimate jump-risk premia (not reported here), we adopt the specification of constant jump
arrival intensity. For the purpose of reconciling the joint time-series data, this specification
is problematic because it assigns the same amount of jump-risk premia irrespective of the
market volatility. In such a setting, on days of high volatility, when options become more
expensive, the percentage jump-risk premia effectively decreases. This partially explains the
findings of Eraker (2000), who adopts the specification of constant jump-arrival intensity,
and concludes jump-risk premia to be insignificant under this setting.

22It should be noted that this test result does not imply that the constant component λ0 of the jump
arrival intensity is not important in capturing the jump behavior in the index dynamics. In fact, using
longer time-series data with daily frequency, Chernov, Gallant, Ghysels, and Tauchen (1999) report evidence
in support of such a constant component. Johannes, Kumar, and Polson (1998), on the other hand, provide
evidence in support of the state-dependent component in jump arrival intensity. Given the relatively short
sample and weekly frequency used in this paper, our ability to pin down the jump component in the index
dynamics is very limited. (For example, the estimate for µ is not significant.) The key point one would want
to take away from this result is that in terms of reconciling spot and option dynamics, the state-dependent
component λ plays a far more important role than the constant component λ0.
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5.2. Simultaneous estimation of jump- and volatility-risk premia

In this section, we focus on a simultaneous estimation of the premia for jump and volatility
risks, evaluating the relative magnitude of the two types of risk premia. For this, we focus
on the SVJ model, which relaxes the constraint ηv = 0 from the SVJ0 model.

A direct estimation of the SVJ model using the joint time-series data {Sn, Cn} reveals
that our ability to pin down the relative magnitude of volatility-risk and jump-risk premia
is limited.23 Using the intuition that OTM/ITM options might have different sensitivities
to the volatility and jump risks, we introduce an additional time series CITM

n of ITM calls
(see data collection details in Section 4.2) in our model estimation. We assume that such
ITM calls are priced with errors, and that the pricing errors are independent across time,
and independent of the three sources of uncertainty in the SVJ model. Moreover, we assume
that on each date n, the standard deviation of the date-n pricing error is proportional to
the bid/ask spread.24 Under these assumptions, letting cITM

n and kITM
n be the date-n price-

to-spot ratio and strike-to-spot ratio, respectively, of the in-the-money call option, we form
the moment condition

E
(
HITM

n

)
= 0 with HITM

n =
cITM
n − f

(
Vn, ϑ, rn, qn, τn, k

ITM
n

)
δITM
n

, (1)

where δITM
n is the date-n bid ask spread (per unit spot price) and f is the SVJ option pricing

formula defined in Eq. (B5). In addition to the 10 “optimal” moment conditions associated
with the 10 SVJ-model parameters ϑ, we introduce this moment condition to exploit the
risk-premia information embedded in the ITM call (or OTM put) option prices.

Table 3: IS-GMM estimates of the SVJ model

κv v̄ σv ρ ηs ηv λ∗ = λ µ σJ µ∗

6.4 0.0153 0.30 −0.53 3.6 3.1 12.3 −0.8% 3.87% −19.2%
(1.8) (0.0029) (0.04) (0.07) (2.4) (2.2) (1.9) (2.4%) (0.72%) (1.8%)

Weekly time-series {Sn, Cn} of the S&P 500 index and the near-the-money short-dated options from
January 1989 to December 1996. An additional time series {CITM

n } of in-the-money calls are used.

Table 3 shows that both types of risk premia are estimated to be positive. The coefficient
µ − µ∗ associated with the premia for jump-size uncertainty is estimated to be 18.4% with
a standard error of 4%, while the coefficient ηv associated with the premia for volatility risk
is estimated to be 3 with a standard error of 2. Compared with the estimates for the SVJ0
model, which imposes the constraint ηv = 0, we see a reduction in jump-risk premia (λ is

23The estimation results for the SVJ model are not reported, but are available upon request.
24We choose ITM calls instead of OTM puts because there are overwhelmingly more quotes on ITM calls

than on OTM puts. Consequently, it is easier to construct a time series of ITM-call quotes with strike-to-spot
ratio as close to 0.95 as possible. This behavior of quote data is in direct contrast with the trade data —
OTM puts are more liquid than ITM calls. Given that put-call parity holds relatively well, and that we
scale the pricing error by the bid/ask spread, which should reflect liquidity, the choice between OTM puts
and ITM calls is not expected to affect our results in any significant fashion.
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reduced by half) accompanying the positive volatility-risk premia. By taking advantage of
the additional time series of ITM call options, we can better pin down the jump-risk premia.
The coefficient ηv for the volatility-risk premia, however, still cannot be precisely measured.
Searching for possible tensions in the system, we repeat the goodness-of-fit tests (as those
reported in Table 2) for this model. The p-value of the overall goodness-of-fit test is 0.40.
We also examine the goodness of fit by looking at the over-identifying restriction introduced
by the additional moment condition Eq. (1). The p-value for that test is 0.58.

The SVJ model extends the SVJ0 model by allowing both the jump- and the volatility-
risk premia to play a role in option pricing. For intuition purpose, we offer some approximate
estimates of the breakdown between the two types of risk premia. Consider a one-month
option traded at 10% market volatility. If the option is at the money, then about 55% of the
overall risk premia is paid for jump risk and the rest for volatility risk. If the option is a 5%
OTM put, then the jump-risk premium component increases to 80%, but for a 5% OTM call
option the percentage decreases to 30%. In other words, investors are more worried about
jump risk in OTM puts than OTM calls.

Similarly, the effect of risk premia also shows up in the underling stock prices. The
time-t instantaneous equity risk premium has two components: (1) ηsVt compensates for the
usual diffusive return risk, and (2) λVt(µ − µ∗) compensates for the jump-size uncertainty.
Measuring the average volatility level by its long run-mean v̄, the SVJ-model estimates imply
that the average mean excess rate of (cum-dividend) return demanded for the diffusive return
risk is 5.5% per year (with a standard deviation of 3.4%), while that demanded for the jump
risk is 3.5% per year (with a standard deviation of 0.7%). This shows that a significant
portion of the equity risk premium is assigned as a premium to compensate for investors
aversion to jumps. Given that less than 3% of the total return variance is due to jump
risk, these numbers suggest that compensation for jump risk is very different from that for
diffusive risk.

Finally, recall that the SVJ model sets the jump-timing risk premium λ∗ − λ to zero.
To gauge its impact on the estimated premium for the jump-size risk (measured in terms
of µ∗ − µ), we estimate λ∗ and λ as two free parameters.25 Our finding with respect to the
premium for jump-size uncertainty remains robust: µ∗ − µ is estimated to be −17.7% with
a standard error of 1.7%. The estimate for λ, however, is very different from those obtained
under the constraint λ∗ = λ. In particular, we find λ∗ < λ, implying a negative jump-timing
risk premium. This result could be due to the fact that different types of jumps coexist in the
data. To ensure a non-negative jump-timing risk premium, we perform the same estimation
under the constraint that λ∗ ≥ λ. The constraint is found to be binding and the estimates
are close to those reported in Table 3. In short, the evidence in support of the premium
for jump-size uncertainty is robust with respect to the constraint of zero jump-timing risk
premium.

5.3. Implications on cross-sectional option prices

In this section, we extend our analysis to cross-sectional option data. (Details on data
collection are given in Section 4.3.) Equipped with the time-series estimation results sum-

25Details are available upon request.
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marized in Tables 1 and 3, we examine the extent to which these models correctly price the
cross-sectional options data observed in the market.

Table 4 summarizes the cross-sectional pricing errors, which are measured as the absolute
differences between the model-implied and the market-observed option prices, both measured
in terms of the Black-Scholes implied volatility. This avoids placing undue weight on expen-
sive options, such as deep-in-the-money or longer-dated options. The positive and negative
signs in the parentheses indicate whether, on average, the model over-prices or under-prices.
As a gauge of how big the mis-pricings are in real terms, we also provide the average bid/ask
spreads — the difference between offer and ask prices, each measured in terms of BS vol.
For a pictorial exposition, Figures 5 plots the volatility smiles (across different maturities)
on a medium-volatility day, while Figures 6 and 7, respectively, plot the volatility smiles on
the most and least volatile days in our sample.

Overall, the ability of the SVJ0 model to capture the volatility smirks is quite remarkable,
given only one option a day (marked by circles in Figures 5-7) is used to obtain the SVJ0
model estimates, while the rest of the options in the cross-sectional data is purely out of
sample. Moreover, our results indicate that the SVJ0 model can fit the steepness of the
smile curves quite well on days of high, medium, and low volatilities. This is to be compared
with the findings of Eraker (2000), who, using the specification of constant jump arrival
intensity, finds that such a jump model cannot generate sufficiently steep smile curves on
high-volatility days. This reinforces our earlier discussion in Section 5.1 on the importance
of the state-dependent nature of the jump-risk premia. In particular, this state-dependent
jump-risk premium is crucial not only for reconciling the spot and option dynamics, but also
for explaining the changes over time of the smile curves.

While it can capture the volatility smirks relatively well, the SVJ0 model consistently
under-prices medium and long-dated options on days of high volatility, and over-prices them
on days of low volatility. This is closely related to the inability of the one-factor volatility
model to capture the rich term structure of volatility implied by the data. As will be discussed
in Section 5.4, the SVJ0 model reverts to its long-run mean too rapidly, compared with what
is implied by the data. Consequently it under-prices long-dated options on high-volatility
days and over-prices these options on low-volatility days.

On days of high and low volatilities, we also observe a large volume of quotes for deep-
in-the-money puts, whose prices none of our models is capable of explaining. This “tipping-
at-the-end” behavior seems to require more randomness on the right tail of the underlying
return distribution under the risk-neutral measure than that suggested by the estimated
models. A possible solution is to allow jumps in volatility, with jump arrivals that are more
frequent, or with larger jump amplitudes, when volatility is low.

Our cross-sectional investigation shows that neither the SV0 nor the SV model is capa-
ble of explaining options across moneyness. This result is not novel. Fitting this class of
stochastic volatility models directly to cross-sectional option prices, Bates (2000) and Bak-
shi, Cao, and Chen (1997) arrive at the same conclusion. Table 4 shows that the SV model
severely over-prices long-dated options. As discussed in Section 5.1, the SV model relies on
volatility-risk premia to explain the risk premia implicit in short-dated options. In doing so,
the volatility-risk premia are severely overstated, resulting in an explosive volatility process
under the “risk-neutral” measure, which, in turn, over-prices long-dated options.
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Table 4: The SVJ Model-Implied Pricing Errors for the S&P 500 Call and Put Options

Days of High Volatility Days of Medium Volatility Days of Low Volatility
k < 0.97 [0.97,1.03] k > 1.03 k < 0.97 [0.97,1.03] k > 1.03 k < 0.97 [0.97,1.03] k > 1.03

SV0 5.4 (−) 2.1 (−) 5.0 (−) 2.9 (−) 0.8 (−) 0.8 (+) 2.9 (−) 0.9 (−) 4.6 (−)
SV 5.1 (−) 1.8 (−) 5.0 (−) 2.8 (−) 0.6 (−) 1.0 (+) 2.8 (−) 0.9 (−) 4.6 (−)
SVJ0 2.3 (−) 1.8 (−) 5.7 (−) 1.6 (+) 0.4 (−) 0.8 (−) 1.2 (+) 0.7 (−) 4.9 (−)
SVJITM 2.5 (−) 1.7 (−) 5.2 (−) 0.6 (+) 0.4 (−) 0.7 (−) 1.0 (−) 0.8 (−) 4.7 (−)
bid/ask

τ
<

60

3.2 1.3 3.9 2.7 1.0 2.3 1.1 0.5 2.8
SV0 5.3 (−) 4.2 (−) 3.0 (−) 2.1 (−) 0.9 (−) 0.5 (+) 0.7 (−) 0.6 (+) 2.3 (−)
SV 2.8 (+) 2.6 (+) 4.2 (+) 1.5 (+) 2.1 (+) 3.1 (+) 1.5 (+) 2.2 (+) 3.2 (+)
SVJ0 3.4 (−) 3.6 (−) 3.9 (−) 0.6 (+) 0.3 (+) 0.4 (−) 2.1 (+) 1.1 (+) 2.5 (−)
SVJITM 2.2 (−) 1.8 (−) 1.9 (−) 0.9 (+) 1.1 (+) 1.4 (+) 2.0 (+) 1.7 (+) 2.7 (−)
bid/ask 60

≤
τ

<
18

0

1.9 1.0 1.8 0.9 0.6 0.9 1.0 0.4 1.4
SV0 5.5 (−) 3.9 (−) 3.3 (−) 1.7 (−) 0.9 (−) 0.3 (−) 0.8 (−) 0.6 (+) 1.6 (+)
SV 7.8 (+) 9.1 (+) 9.7 (+) 7.2 (+) 7.9 (+) 8.7 (+) 6.3 (+) 7.3 (+) 8.1 (+)
SVJ 6.4 (−) 5.6 (−) 6.6 (−) 1.4 (−) 1.2 (−) 1.5 (−) 0.7 (+) 0.5 (+) 0.5 (−)
SVJITM 2.6 (−) 1.6 (+) 2.2 (+) 2.4 (+) 2.8 (+) 3.2 (+) 3.2 (+) 3.6 (+) 4.0 (+)
bid/ask

τ
≥

18
0

1.7 1.0 1.3 0.8 0.7 0.6 0.5 0.4 0.6

All prices are measured in 100 times the Black-Scholes implied volatility. Pricing errors are measured as the absolute differences
between the model-implied and market-observed prices. “+” indicates that on average the model over-prices, and “−” indicates
under-pricing. The bid/ask spreads are measured as the differences between the offer and ask prices. SVJITM indicates the case
in Section 5.2 where one additional time series of ITM calls is used in model estimation.
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Figure 5: Smiles curves on a medium-volatility day of the sample. All observations are observed between 10:10 a.m. and 10:20
a.m. on November 22, 1996. The call options are marked by ‘×,’ and the put options by ‘�’.
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Figure 6: Smiles curves on the most volatile day of the sample. All observations are observed between 10:00 a.m. and 11:00
a.m. on October 16, 1990. The call options are marked by ‘×,’ and the put options by ‘�’.
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Figure 7: Smiles curves on the least volatile day of the sample. All observations are observed between 10:00 a.m. and 11:00
a.m. on August 3, 1994. The call options are marked by ‘×,’ and the put options by ‘�’.
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5.4. Diagnostic tests on model mis-specifications

This section examines possible mis-specifications of the volatility dynamics.26 For each of
the parametric models considered in this paper, we obtain a time series of option-implied
volatility {V ϑ

n }. For example, Figure 8 plots the series {
√
V ϑ

n } for the SVJ0 model.27 Taking
advantage of the option-implied volatility series, our diagnostic tests focus on two issues:
(1) the term structure of volatility and (2) jumps in volatility.
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Figure 8: The time series of {
√
V ϑ

n } inferred from the time series {Cn} of near-the-money
short-dated options, using the SVJ0-model parameters ϑ.

Given that there have been extensive empirical studies conducted on the stochastic-
volatility models with jumps, it is instructive for us to first compare our model estimates —
the subset associated with the data-generating process — with those reported in time-series
studies using stock indices alone. Taking the SVJ0 model estimates (Table 1), for example,
we have κv = 7,

√
v̄ = 11%, σv = 0.28, and ρ = −0.5. This is compared with κv = 3.2,√

v̄ = 14%, σv = 0.24, and ρ = −0.47 reported by Eraker, Johannes, and Polson (2000),
and κv = 3.4,

√
v̄ = 13%, σv = 0.17, and ρ = −0.33 reported by Andersen, Benzoni, and

Lund (1998). Our estimate of the long-run mean of volatility is slightly lower because our

26Give that option prices are influenced by both the price dynamics and the market prices of risks, the
diagnostic tests in this section and the goodness-of-fit tests in Table 2 are joint tests on the dynamics and
the pricing kernel. The motivations for these tests, however, are different. In particular, the diagnostic tests
designed in this section focus on the part of volatility dynamics that is less sensitive to the mis-specifications
in pricing kernel. To illustrate this point, the diagnostic tests are performed for the four different models
with very different specifications of pricing kernels.

27We plot {
√

V ϑ
n } in Figure 8 so that a direct comparison can be made with the Black-Scholes implied

volatility (Figure 1). While the time-series patterns are similar, the levels of inferred volatility are quite
different. In particular, because of the different risk-premium structures of the two models, the volatilities
inferred from using the Black-Scholes model are higher than those inferred from using the SVJ0 model.

29



sample period falls into a less volatile period than theirs. Overall, our estimates are of the
same order of magnitude. This is quite remarkable, given that their volatility estimates rely
on the time series of the S&P 500 index, while ours depend heavily on option prices and on
how risk premia are accounted for in option prices. The jump estimates, however, seem to
be more diverse. As noted earlier, our ability to identify the jump component in the actual
dynamics is quite limited by our relatively short sample.

Our first set of diagnostic tests indicates that the stochastic volatility model of Heston
(1993) is not rich enough to capture the term structure of volatility implied by the data. [See
also Stein (1989) and Bollerslev and Mikkelsen (1996)]. Letting En(εv1

n+1) = 0 be the moment
condition associated with the first moment of volatility, our model specification implies that
εv1 is serially uncorrelated, i.e., E(εv1

n ε
v1
n+1) = 0. As reported in Table 5, this hypothesis is

strongly rejected. The sample estimate of corr(εv1
n , ε

v1
n+1) is negative and significant. To see

the implication of this finding, we recall that εv1
n = V ϑ

n −M5(V
ϑ
n−1, ϑ), where, for any v ∈ R+,

M5(v, ϑ) = exp(−κv∆t)v + (1 − exp(−κv∆t)) v̄ .

It then follows that the unconditional auto-correlation can be calculated as28

corr(εv1
n , ε

v1
n−1) = corr

(
Vn+1 − Vne

−κv∆t , Vn − Vn−1e
−κv∆t

)
.

Using the fact that the one-step auto-correlation corr(Vn, Vn−1) is exp(−κv∆), we have
corr(εv1

n , ε
v1
n−1) = e−κv∆t

[
e−2κv∆t − corr (Vn+1, Vn−1)

]
. A negative and significant sample esti-

mate of corr(εv1
n , ε

v1
n−1) therefore indicates that the data call for corr(Vn+1, Vn−1) > exp(−2κv∆t).

This is in contrast to the model-prescribed two-step auto-correlation corr(Vn+1, Vn−1) =
exp(−2κv∆t). In other words, the stochastic volatility model is not capable of fitting one-
and two-step auto-correlations simultaneously, the reason being that the model prescribes
a term-structure of volatility, corr(Vn, Vn+m) = exp(−mκv∆t), which “dies” too quickly
relative to the data.

To accommodate a richer term structure of volatility, one solution is to allow for multiple
volatility factors with different rates of mean-reversion.29 An implementation of two-factor
models, although feasible, is not considered here. This mis-specification, however, is not
likely to influence our main empirical findings concerning the importance of jump-risk premia.
This is because that our time-series estimation focuses mainly on short-dated options, the
pricing of which is not significantly affected by such a mis-specification. For the purpose of
pricing long-dated options, as well as for a better understanding of volatility-risk premia,
however, accommodating a richer term structure of volatility is important. As reported in
Section 5.3, this mis-specification results in under-priced long-dated options on high-volatility
days, and over-priced long-dated options on low-volatility days.

28Here, correlation is with respect to the stationary distribution. That is, the volatility process is assumed
to start from its ergodic distribution, as opposed to the Dirac measure (with V0 = v) that has been assumed
in our empirical setting. For a large sample, this difference does not affect the discussion that follows.

29Some examples include the two-factor square-root model of Bates (2000) and a stochastic-volatility
model with stochastic long-run mean suggested by Duffie, Pan, and Singleton (2000). Indeed,
there is an expanding empirical literature on estimating multi-factor volatility models. (See, for
example, Andersen, Bollerslev, Diebold, and Labys (2000), Alizadeh, Brandt, and Diebold (2001),
Chernov, Gallant, Ghysels, and Tauchen (1999, 2000), and references therein.)
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Table 5: Diagnostic tests on volatility dynamics

SV0 SV SVJ0 SVJ SVJITM

E(εvn ε
v
n+1) = 0 −2.37∗ −2.62∗∗ −2.04∗ −2.19∗ −2.38∗

E(ε v3
n ) = 0 −0.69 0.85 0.70 0.54 −0.59

E(ε v4
n ) = 0 −0.38 0.65 0.62 0.53 0.05

E(ε̃ v3
n ) = 0 −0.58 1.46 2.17∗ 2.59∗∗ 0.13

E(ε̃ v4
n ) = 0 0.95 1.68 2.67∗∗ 3.75∗∗ 1.03

∗ and ∗∗ indicate significance under a 5% and 1% test, respectively. The
SVJ and SVJITM cases are for the same model except that, in the case of
SVJITM , one additional time series of ITM calls is used in model estimation.

We next focus on the higher moments of the volatility process, seeking evidence of jumps
in volatility, as conjectured by Bates (2000). Let En(εv3

n+1) = 0 and En(εv4
n+1) = 0 be the mo-

ment conditions associated with the third and fourth moments of volatility. Table 5 reports
the conditions E(εv3

n+1) = 0 and E(εv4
n+1) = 0, along with their respective heteroskedasticity-

corrected versions, E(ε̃v3
n+1) = 0 and E(ε̃v4

n+1) = 0. Evidently, the heteroskedasticity-corrected
(ε̃) tests have more asymptotic power than their respective uncorrected (ε) counterparts. For
the SVJ0 and SVJ models, the sample estimates of the moment conditions E(ε̃v3

n+1) = 0 and
E(ε̃v4

n+1) = 0 are found to be positive and significantly different from zero, indicating the
possibility of jumps (with positive mean jump size) in the stochastic-volatility process or at
least fatter-tailed innovations in the volatility process. Our overall findings, however, are
mixed. It could very well be explained by the limited power of our test statistics.

Examples of jumps in stochastic volatility can be found in Duffie, Pan, and Singleton
(2000). Empirical findings with respect to such jumps-in-volatility models can be found in
Eraker, Johannes, and Polson (2000). Closely related is the issue that under the “square-
root” specification, the volatility of volatility cannot increase fast enough during volatile
markets, as documented by Jones (1999). Under our setting, a direct test on the volatility
of volatility is the goodness-of-fit test associated with the moment condition E(εv2

n ) = 0
(Table 2). Although there is no strong indication that this moment condition is violated for
the SVJ0 model, a full resolution relies on an empirical study with a more relaxed volatility
of volatility structure.30

How would such a mis-specification affect our findings with respect to the importance of
jump-risk premia? In an unconditional sense, evidence for jump-risk premia can be found in
the “gap” between the volatility implied by the near-the-money short-dated option prices and
that observed directly from the spot market. More specifically, the role of jump-risk premia
is to make such near-the-money options more expensive, closing the “gap” between the
two. Adding jumps to the stochastic volatility, however, will result in a fatter-tailed return
distribution, making the near-the-money options even cheaper and therefore widening the
“gap.” In other words, simply adding jumps in volatility will not replace the role of premia

30The CEV model adopted by Jones (1999) is one example, although it does not provide an analytically
tractable option pricing formula. Alternatively, multi-factor affine models can be considered.
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for price jumps. But like the premia for price jumps, one could also incorporate premia
for volatility jumps, introducing an additional degree of freedom to explain option prices.31

These empirical issues, however, are not addressed in this paper, and could be promising for
future research.

6. Concluding Remarks

In this paper, we examined how different risk factors are priced in the S&P 500 index
options, and, in doing so, provided strong evidence in support of a jump-risk premium that
is highly correlated with the market volatility. We found that this jump-risk premium plays
an important role in explaining both the joint time-series behavior of spot and option prices
and the cross-sectional behavior of option prices.

We conclude with remarks on the economic implications of the pricing kernel estimated
from the joint time-series data. A formal treatment, however, is beyond the scope of this
paper. Using the estimation results reported in Section 5.2, we found that the excess mean
rate of return demanded for the usual “diffusive” return risk is 5.5% per year, while that for
jump risk is about 3.5% per year. Given that less than 3% of the total return variance is due
to jump risk, these numbers indicate that the compensation for jump risk is very different
from that for diffusive risk. To explain these empirical results within the framework of
rational expectations, it may be fruitful to explore utility models showing potentially extreme
aversion to big losses or negative skewness,32 as in, for example, Gul (1991). Alternatively, if
the spot and options markets are not fully integrated, then such significant jump-risk premia
could be partially proxying for market frictions that are specific only to the options market.

31Statistically, jumps in volatility and jumps in price could result in similar price movements. Investors’
aversion to these jump risks, however, could be quite different. For example, Liu, Longstaff, and Pan (2001)
find that these two types of jumps have distinctively different implications for investors asset allocation.
Potentially, one could also identify these two types of risk premia using options with different moneyness,
which react differently to these two types of jump risks. For example, OTM puts are more sensitive to
negative price jumps than OTM calls, and the price jump-risk premia documented in this paper play an
important role in capturing this cross-sectional pattern. The cross-sectional analysis of Duffie, Pan, and
Singleton (2000) indicates that the role of risk-neutral volatility jumps differs from that of risk-neutral price
jumps, indicating that the two types of risk premia could be important in capturing the cross-sectional
behavior in different ways.

32Harvey and Siddique (2000) document evidence of systematic skewness using cross-sectional equity
returns. While simple utility functions such as the one with constant relative risk aversion coefficient does
allow aversion to variance and preference for skewness, the magnitude of the two is tied down by one
parameter (the risk aversion coefficient). Explicit modeling of skewness preference can be found, among
others, in Rubinstein (1973) and Kraus and Litzenberger (1976).
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Appendices

A. The state-price density

This appendix provides the state-price density that links the data-generating process defined
in Eqs. (1) and (2) with the risk-neutral dynamics defined in Eqs. (4) and (5).

Consider a candidate state-price density π of the form

πt = exp

(
−
∫ t

0

rτ dτ

)
E
(
−
∫ t

0

ζτ dWτ

)
exp

(∑
i,Ti≤t

Uπ
i

)
, (A1)

where E( · ) denotes the stochastic exponential,33 and where ζ are the market prices of the
Brownian shocks in the price and volatility defined by

ζ
(1)
t = ηs

√
Vt , ζ

(2)
t = − 1√

1 − ρ2

(
ρηs +

ηv

σv

)√
Vt , (A2)

where ηs and ηv are constant coefficients. For this specification of market price of risk, the
time-t instantaneous risk premium associated with the diffusive price shock is ηsVt, while
that associated with the volatility shock is ηvVt.

The jump risks are priced by the jump component in the pricing kernel — whenever the
underlying price jumps, the pricing kernel also jumps. The jump sizes Uπ

i are assumed to be
i.i.d. normal with mean µπ and variance σ2

π, and are assumed to be independent of W , W r,
W q, and inter-jump times. The random jump sizes Uπ

i and Us
i are allowed to be correlated

(with constant ρπ), but are assumed to be independent across different jump times. The most
general form of jump-risk premia is obtained by treating µπ, σπ, and ρπ as free parameters.
In this paper, however, we constrain the mean relative jump size in the state-price density to
be zero. That is, µπ +σ2

π/2 = 0. This constraint is, in fact, translated to a zero jump-timing
risk premium. (Similarly, if we were to turn off the correlation between Uπ

i and Us
i by letting

ρπ = 0, the jump-size risk premium would be zero.)
We now show that Eq. (A1) indeed defines a state-price density. Let

S =

{
St exp

(∫ t

0

qτ dτ

)
: 0 ≤ t ≤ T

}
, B =

{
exp

(∫ t

0

rτ dτ

)
: 0 ≤ t ≤ T

}
,

be the total gain processes generated by holding one unit of the underlying security and
one dollar in the bank account, respectively. For π to be a state-price density, the deflated
processes Sπ = πS and Bπ = πB are required to be local martingales. (One can show that
this indeed rules out arbitrage opportunities involving S and B, under natural conditions on
dynamic trading strategies. See, for example, Appendix B.2 in Pan (2000).) To see that Sπ

and Bπ are indeed local martingales, we apply Ito’s Formula,

dSπ
t =

(√
Vt − ζs

t

)
Sπ

t dW
s
t − ζv

t Sπ
t dW

v
t +

[
exp

(
Uπ
Nt

+ Us
Nt

)
− 1
]
Sπ

t− dNt − (λ0 + λ1 Vt)µ
∗Sπ

t dt

dBπ
t = −ζs

t Bπ
t dW

s
t − ζv

t Bπ
t dW

v
t +

[
exp

(
Uπ
Nt

)
− 1
]
Bπ

t− dNt ,
33The stochastic exponential of a continuous semi-martingale X , with X0 = 0, is defined by E(X)t =

exp (Xt − [X, X ]t /2), where [X, X ] is the total quadratic-variation process.
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where Nt is the number of price jumps by time t, and where µ∗ = exp(µJ +σJσπρπ+σ2
J/2)−1.

We see that Sπ and Bπ are in fact local martingales, by using the fact that, for any i ≥ 1, Uπ
i

and Us
i are independent of {Vt} and that E [exp (Uπ

i + Us
i ) − 1] = µ∗ and E [exp (Uπ

i ) − 1] =
0.

Finally, to link the state-price density π with the risk-neutral dynamics defined in Eqs. (4)

and (5), we define a density process ξt = πt exp
(∫ t

0
rs ds

)
. Applying Ito’s Formula, one can

show that ξ is a local martingale. If ξ is actually a martingale, then ξ uniquely defines an
equivalent martingale measure Q. In fact, letting

Wt(Q) = Wt +

∫ t

0

ζs ds , 0 ≤ t ≤ T , (A3)

one can show that the dynamics of (S, V ) under Q are indeed in the form of the risk-neutral
dynamics defined Eqs. (4) and (5).

B. Option pricing and numerical integration

This appendix provides option pricing under the risk-neutral dynamics specified in Eqs. (4)
and (5). To facilitate our analyses of the constant component of the jump-arrival intensity,
we assume the intensity to be λ0 + λ1Vt, for some non-negative constants λ0 and λ1.

For any c ∈ C, the time-t conditional transform of lnST , when well defined, is given by

ψϑ(c, Vt , rt , qt , T − t) = EQ
t

[
exp

(
−
∫ T

t

ru du

)
ec ln ST

]
.

Under certain integrability conditions (Duffie, Pan, and Singleton (2000)),

ψϑ(c, v, r, q, τ) = exp

(
α(c, τ, ϑ, θr, θq) + βv(c, τ, ϑ) v + βr(c, τ, θr) r + βq(c, τ, θq) q

)
, (B1)

where α = αv + αr + αq. Letting γ2
r = κ2

r + 2(1 − c)σ2
r and γ2

q = κ2
q + 2cσ2

q , the coefficients
in Eq. (B1) αr, βr, αq, βq, αv, and βv are defined by

βr(c, t, θr) = − 2(1 − c) (1 − exp(−γrt))

2γr − (γr − κr) (1 − exp(−γrt))

αr(c, t, θr) = −κr r̄

σ2
r

(
(γr − κr) τ + 2 ln

[
1 − γr − κr

2γr

(
1 − e−γrτ

)])
,

(B2)

βq(c, t, θq) = − 2c (1 − exp(−γqt))

2γq − (γq − κq) (1 − exp(−γqt))

αq(c, t, θq) = −κq q̄

σ2
q

(
(γq − κq) τ + 2 ln

[
1 − γq − κq

2γq

(
1 − e−γqτ

)])
,

(B3)
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βv(c, t, ϑ) = − a (1 − exp(−γvt))

2γv − (γv + b) (1 − exp(−γvt))

αv(c, t, ϑ) = − κ∗vv̄
∗

σ2
v

(
(γv + b) τ + 2 ln

[
1 − γv + b

2γv

(
1 − e−γvτ

)])

+ λ0 t

(
exp

(
cµ∗

J +
c2σ2

J

2

)
− 1 − cµ∗

)
,

(B4)

where b = σvρc− κ∗v, a = c(1− c)− 2λ1 [exp(cµ∗
J + c2σ2

J/2) − 1 − cµ∗], and γv =
√
b2 + aσ2

v .
The parameters superscripted by ∗ denote the risk-neutral counterparts of those under the
data-generating measure P . For example, κ∗v = κv − ηv and v̄∗ = κvv̄/κ

∗
v are the risk-neutral

mean-reversion rate and long-term mean, respectively, and µ∗
J = ln(1 + µ∗) − σ2

J/2 is the
risk-neutral counterpart of µJ . While the square root and logarithm of a complex number
z are not uniquely defined, for notational simplicity the results are presented as if we are

dealing with real numbers. To be more specific, we define,
√
z = |z|1/2 exp

(
i arg(z)

2

)
and

ln(z) = ln |z|+ i arg(z), where for any z ∈ C, arg(z) is defined such that z = |z| exp(i arg(z)),
with −π < arg(z) ≤ π.

Letting kt = Kt/St be the time-t “strike-to-spot” ratio, the time-t price of a European-
style call option with time-to-expiration τt can be calculated as

Ct = St f(Vt, ϑ, rt, qt, τt, kt) ,

where f : R+ × Θ × R+ × R+ × R+ × R+ → [0, 1] is defined by

f(v, ϑ, r, q, τ, k) = P1 − kP2 , (B5)

with

P1 =
ψ(1, v, r, q, τ)

2
− 1

π

∫ ∞

0

Im
(
ψ(1 − iu, v, r, q, τ)ei u(ln k)

)
u

du

P2 =
ψ(0, v, r, q, τ)

2
− 1

π

∫ ∞

0

Im
(
ψ(−iu, v, r, q, τ)ei u(ln k)

)
u

du ,

(B6)

where Im(·) denotes the imaginary component of a complex number.
The improper probabilities P1 and P2 defined by Eq. (B6) are key to determining the

time-t price Ct of an option with time τ to expiration and strike-to-spot ratio k. This
appendix provides a fast numerical scheme, with error analysis, for the inversion Eq. (B6),
assuming that the transform ψ(c, v, r, q, τ) defined by Eq. (B1) is explicitly known. It should
be noted that, whenever applicable, all of expectations and probability calculations in this
appendix are taken with respect to the risk-neutral measure Q.

Fixing today at time t, we write, for national simplicity, ψ(c) = ψ(c, Vt, rt, qt, τ), where
Vt, rt, and qt are today’s volatility, risk-free short rate, and dividend yield. First, consider
P1 = ψ(1) P̃1 , where as can be seen from the CIR discount formula,

ψ(1) = Et

[
exp

(
−
∫ t+τ

t

qs ds

)]
= exp (αq(1, τ, θq) + βq(1, τ, θq) qt) , (B7)
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where αq and βq are as defined in Eq. (B3). Effectively, ψ(1) is the dividend analogue of a
“τ -period bond price.” Thus defined P̃1 is a real probability that can be calculated through
the standard Lévy inversion formula

P̃1 = P
(
X̃1 ≤ x̄

)
=

1

2
− 1

π

∫ ∞

0

Im
(
ψ̃1(u) exp (−iux̄)

)
u

du , (B8)

where x̄ = (rt − qt)τ − ln k, and where the random variable X̃1 is uniquely defined by its
characteristic function ψ̃1(u) via

ψ̃1(u) =
ψ(1 − iu) exp(iu(rt − qt)τ)

ψ(1)
. (B9)

In practice, the Lévy inversion Eq. (B8) is carried out via some form of numerical in-

tegration. Letting I1(u) = Im
(
ψ̃1(u) exp(−iux̄)

)
denote the integrand, we approximate

by

P̃1 ≈
1

2
− 1

π

[U1/∆u1]∑
n=0

I1((n+ 1/2)∆u1)

n + 1/2
, (B10)

where [x] is an integer such that [x] − 1 < x ≤ [x]. Two types of errors are introduced by
this numerical scheme. For any U1 <∞, there is a truncation error. For any ∆u1 > 0, there
is a discretization error. To achieve any desired precision δ for P̃1, we can select a cutoff
level U1 such that

truncation error =

∣∣∣∣ 1π
∫ ∞

U1

I1(u)

u
du

∣∣∣∣ ≤ δ . (B11)

We can select a step size ∆u1 such that

discretization error ≤ max

[
P

(
X̃1 < x̄− 2π

∆u1

)
, P

(
X̃1 > x̄+

2π

∆u1

)]
≤ δ , (B12)

where the first inequality follows from a Fourier analysis. See, for example, Davies (1973).
To control for the truncation error, we take advantage of the fact that I(u) is explicit, and

study its asymptotic behavior for large u. In particular, we can show that, for large enough u,
|I1(u)| ≤ exp (−uA1 + A0) where A1 = (v + v̄∗κ∗τ)

√
1 − ρ2/σv, and A0 = (v + v̄∗κ∗τ) (κ∗−

σvρ)/σ
2
v +ln (4(1 − ρ2)) κ∗v̄∗/σ2

v . For the desired accuracy δ, we can therefore choose U1 such
that

1

πA1U1

exp (−A1U1 + A0) ≤ δ.

To control for the discretization error, we focus on the probabilities P
(
X̃1 < x̄− 2π/∆u1

)
and P

(
X̃1 > x̄+ 2π/∆u1

)
, which sample further into the left and right tails as ∆u1 approaches
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to zero. Given that the mean µX1 and variance σ2
X1

of X̃1 are finite, the tail probabilities
can be controlled by Chebyshev’s inequality:

P

(
|X̃1 − µX1

| >
σX1√
δ

)
< δ. (B13)

We can therefore establish an upper bound in probability for the two tail events {X̃1−µX1
>

σX1
/
√
δ} and {X̃1 −µX1

< −σX1
/
√
δ}. The discretization step ∆u1 can be chosen such that

2π

∆u1
= max

(
x̄− µX1

, µX1
− x̄
)

+
σX1√
δ
. (B14)

To calculate the mean and variance of X̃1, we again take advantage of its explicitly known
characteristic function ψ̃1( · ). Specifically, for any u ∈ R, the moment-generating function

of X̃1 is E
[
exp

(
uX̃1

)]
= ψ̃1(−iu), from which its mean and variance can be derived

accordingly.
The numerical integration scheme used for P2 is similar. Details are omitted, and are

available upon request.

C. Large-sample properties of IS-GMM estimators

An inherent feature of exchange-traded options is that certain contract variables, such as time
τn to expiration and strike-to-spot ratio kn, vary over time. As the option-implied stochastic
volatility V ϑ

n depends on τn and kn, this variation in contract variables introduces a form
of nuisance-dependency to the moment conditions that may affect the large-sample proper-
ties of the IS-GMM estimators. In this appendix, we establish the strong consistency and
asymptotic normality of IS-GMM estimators under assumptions of weak time-stationarity of
{τn} and geometric ergodicity of {yn, Vn, rn, qn, kn}. The results established in this section
could be useful in other applications using exchange-traded derivative securities.34

C.1. Stationarity assumption for contract variables

To motivate our assumptions for the contract variables, we recall from Figure 2 that {τn}
is “repetitive,” in an almost deterministic fashion according to the business calendar, while
{kn} evolves in a random fashion that can be thought of as a sample path drawn from a
stationary process.

The nearly periodic feature of {τn} makes the usual mixing conditions difficult to justify.
For example, suppose that {τn} is of the form (40, 33, 26, 19, 40, 33, 26, 19, . . . ). Then on
date n, depending on where we start initially, τn can be 40, 33, 26, or 19. Effectively, this
chain has an infinitely long “memory,” contrary to the mixing property.35 In this paper, we

34For exchange-traded derivatives, this situation of time-varying contract variables almost always arises.
In over-the-counter markets, however, contract variables on regularly quoted derivative prices are usually
constant over time. See Brandt and Santa-Clara (2001) for an application to over-the-counter derivatives.

35The “mixing” property of a Markov chain can be intuitively explained by a physical analogue: the
location of a particle or gaseous mixture becomes less and less dependent on its initial position as time
progress. See Gallant and White (1988) and references therein.
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take an alternative approach, and assume that {τn} takes only finitely many outcomes, and
satisfies a time-stationarity property (See Assumption C.1 below) that is weaker than typical
mixing conditions. In the above example, for instance, {τn} is time stationary because the
fraction of observations for which τn = 40 converges to 0.25, and likewise for each of the other
outcomes of τn. Such an assumption of finitely many outcomes is characteristic of many
derivative contract variables, such as the indicator for “put” versus “call,” the exchange
identity (for example, CBOE, CME, or PHLX) from which the derivative securities are
observed, the maturity of the underlying instruments (in the case of interest-rate derivatives),
or multiple selections of an underlying.

An appropriate stationarity assumption for the dynamic behavior of the strike-to-spot
ratio {kn} is not as clear. In particular, the evolution of {kn} could be quite complicated,
depending on the evolution over time of the strike-price grid, which is driven by detailed
institutional features of the equity index option market. In this paper, our consistency
result can be based on the assumption that {kn} is, joint with {yn, Vn, qn, rn}, geometrically
ergodic, as stated more precisely below.

C.2. Consistency

We start with a formal definition of the option-implied volatility introduced in Section 3.1.
Let Ξ ⊂ [0, 1]×Θ×R+ ×R+ ×R+ ×R+ denote the domain of invertibility (with respect to
volatility) of the option-pricing function f of Eq. (3), in that Ξ is the maximal set for which
a mapping g : Ξ → R+ is uniquely defined by

f(g(c, ϑ, r, q, τ, k), ϑ, r, q, τ, k) = c , (C1)

for all (c, ϑ, r, q, τ, k) ∈ Ξ. We suppose that the parameter space Θ is defined so that, for
any observation date n and all ϑ ∈ Θ, we have (cn, ϑ, rn, qn, τn, kn) ∈ Ξ. In effect, this is a
joint property of the data and Θ, akin to an assumption that the model is not shown to be
mis-specified. Indeed, in the empirical results to follow, inversion was possible at all data
points. For any ϑ ∈ Θ, we can therefore define the date-n option-implied volatility by

V ϑ
n = g(cn, ϑ, rn, qn, τn, kn) . (C2)

We next establish the link between the option-implied volatility V ϑ
n and the true volatility

state variable Vn by letting V ϑ
n = ν(V ∆

n , ϑ, r∆
n , q

∆
n , τn, kn), where ν : R+ × Θ × R+ × R+ ×

R+ × R+ → R+ is defined by

ν(v, ϑ, r, q, τ, k) = g(f(v, ϑ0, r, q, τ, k), ϑ, r, q, τ, k) , (C3)

where g is defined by Eq. (C1), using the fact that cn = f(V ∆
n , ϑ0, r

∆
n , q

∆
n , τn, kn). We note

that ν(v, ϑ0, r, q, τ, k) = v.
Letting Xn =

[
y(n,ny), V(n,nv), r(n,nv), q(n,nv), k(n,nv)

]
denote the “ny-history” of y and the

“nv-histories” of r, q, k, and τ , and letting Yn = τ(n,nv) denote the “nv-history” of τ , we
write

H(Xn, ϑ, Yn) = h
(
y(n,ny), ν

(
V(n,nv), ϑ, r(n,nv), q(n,nv), τ(n,nv), k(n,nv)

)
, ϑ
)
, (C4)
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where r(n,nv) = [rn, rn−1, . . . , rn−nv+1], and, analogously, q(n,nv), k(n,nv), and τ(n,nv) are the
nv-dimensional vectors consisting of qn, kn, τn, and their respective lags. As outlined in the
previous subsection, reasonable stationarity assumptions for X and Y are rather different,
and are treated separately.

Assumption C.1 (time stationarity of Y ) {Yn} has finitely many outcomes, denoted

{1, 2, . . . , I}. For each outcome i and each positive integer N , let A
(i)
N = {n ≤ N : Yn = i}

be the dates, up to N , on which Y has outcome i. For each i, there is some wi ∈ [0, 1], such
that

lim
N

#A
(i)
N

N
= wi a.s. , (C5)

where #( · ) denotes cardinality.

For a proof of the geometric ergodicity of the state vector {yn, Vn, rn, qn}, see Appendix B.9
of Pan (2000). Assuming further that {kn} and {yn, Vn, rn, qn} are jointly geometrically
ergodic, we know that Xn =

[
y(n,ny), V(n,nv), r(n,nv), q(n,nv), k(n,nv)

]
is geometrically ergodic,

since it includes only finitely many lags of the joint process.

Assumption C.2 (USLLN of A(i)-Sampling) For each outcome i of Y , letting

G
(i)
N (ϑ) =

1

#A
(i)
N

∑
n∈A

(i)
N

H(Xn, ϑ, i) ,

G
(i)
∞ (ϑ) = limN G

(i)
N (ϑ) exists (pointwise SLLN), and

sup
ϑ∈Θ

|G(i)
N (ϑ) −G(i)

∞ (ϑ)| → 0 a.s. . (C6)

Given the pointwise-SLLN portion of Assumption C.2, in order to establish the uniform SLLN
of Assumption C.2, it is typical to assume some form of Lipschitz condition on H(x, ϑ, i) as
a function of ϑ. Examples of such conditions include the Lipschitz and derivative conditions
of Andrews (1987) and the first-moment-continuity condition of Hansen (1982).

We now establish the uniform strong law of large numbers (USLLN) of {H(Xn, ϑ, Yn)},
key step step to establishing the strong consistency of {ϑ̂N}. A proof can be found in
Appendix B.8 in Pan (2000).

Proposition C.1 (USLLN of H(X, ϑ, Y )) Under Assumptions C.1 and C.2, for each ϑ,
G∞(ϑ) = limN GN(ϑ) exists, and

sup
ϑ∈Θ

|GN(ϑ) −G∞(ϑ)| → 0 a.s. ,

where GN(ϑ), defined by Eq. (5), is the sample moment of the observation function.

Finally, to show strong consistency of the IS-GMM estimator {ϑ̂N}, we adopt the following
two standard assumptions.
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Assumption C.3 (convergence of weighting matrices) WN → W0 almost surely for
some constant symmetric positive-definite matrix W0.

Under Assumption C.3 and the conditions of Proposition C.1, the criterion function CN(ϑ) =
GN(ϑ)>WNGN(ϑ) converges almost surely to the asymptotic criterion function C : Θ → R

defined by C(ϑ) = G∞(ϑ)>W0G∞(ϑ). In particular, we have C(ϑ0) = 0, given the moment
condition Eq. (2), the pointwise-SLLN portion of Proposition C.1, and the fact that V ϑ0

n =
V ∆

n .

Assumption C.4 (uniqueness of minimizer) C(ϑ0) 6= C(ϑ), ϑ ∈ Θ, ϑ 6= ϑ0.

Theorem C.1 (strong consistency) Under Assumptions C.1–C.4, the IS-GMM {ϑN} es-
timator converges to ϑ0 almost surely as N → ∞.

Given the Uniform SLLN (Proposition C.1), the proof is standard and omitted. [See, for
example, the proof of Theorem 3.3 in Gallant and White (1988).]

C.2.1. Asymptotic Normality

Next, we establish asymptotic normality for the IS-GMM estimator, allowing for time-varying
contract variables. Because ν(v, ϑ0, r, q, τ, k) = v, the sample moment GN(ϑ) evaluated
at the true parameter ϑ0 does not depend on the contract variables {τn, kn}. Given the
consistency result above, the asymptotic normality of

√
NGN(ϑ0) therefore depends only on

the properties of (y, V ) and h via a standard form of Central Limit Theorem (CLT).

Assumption C.5 (CLT)
√
NGN(ϑ0) converges in distribution as N → ∞ to a normal

random vector with mean zero and some covariance matrix Σ0.

This assumption follows immediately from the geometric ergodicity of (y, V ) and an as-
sumption of integrability of ||h

(
y(n,ny), V(n,nv)

)
||2+δ, for some δ > 0, over the stationary

distribution of
(
y(n,ny), V(n,nv)

)
. (See, for example, Theorem 7.5 of Doob (1953) and the

proof of Theorem 4 of Duffie and Singleton (1993).)
The asymptotic normality of

√
N(ϑN − ϑ) depends further on the local behavior of the

observation functions in a neighborhood of ϑ0, and is influenced by the contract variables
{τn, kn}. For this, we consider the derivative d(ϑ,Xn, Yn) of H(Xn, ϑ, Yn) with respect to ϑ,
defined by

d(ϑ,Xn, Yn) =
∂

∂ϑ
h
(
y(n,ny), V

ϑ
(n,nv) , ϑ

)
+

n∑
i=n−nv+1

∂

∂vi

h
(
y(n,ny), V

ϑ
(n,nv) , ϑ

)
gϑ

(
ci, ϑ, r

∆
i , q

∆
i , τi, ki

)
,

(C7)

where gϑ(c, ϑ, r, q, τ, k) = ∂g(c, ϑ, r, q, τ, k)/∂ϑ, with g defined by Eq. (C1), and where ci =
f(V ∆

i , ϑ0, r
∆
i , q

∆
i , τi, ki). The first term on the right-hand side of Eq. (C7) arises from the

explicit dependence of h on ϑ, while the second term arises from the dependence of h on Vi

and the dependence of V ϑ
i = g(ci, ϑ, r

∆
i , q

∆
i , τi, ki) on ϑ, for i ∈ {n − nv + 1, . . . , n}. This

second term is important in identifying risk-premium parameters such as ηv. Intuitively,
such parameters are identified by exploring the option-pricing relation through V ϑ.
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Assumption C.6 (convergence of “Jacobian estimator”) For some constant (nh×nϑ)
matrix d0 of rank nϑ: (i) 1

N

∑
n≤N d(ϑ0, Xn, Yn) converges in probability as N → ∞ to d0.

(ii) For any {ϑn} converging in probability as n→ ∞ to ϑ0 , 1
N

∑
n≤N d(ϑn, Xn, Yn) converges

in probability as N → ∞ to d0.

Part (i) of Assumption C.6 follows from geometric ergodicity of X, independence and time-
stationary of Y , and integrability (over the stationary distribution of X) of d(ϑ,Xn, i), for
each i. Given that part (i) holds, part (ii) follows from assuming first-moment continuity
(as in Hansen (1982)) of d(ϑ,Xn, Yn) at ϑ0.

Theorem C.2 (asymptotic normality) Under Assumptions C.1–C.6,
√
N (ϑN − ϑ0) con-

verges in distribution as N → ∞ to a normal random vector with mean zero and covariance
matrix

Λ = (d>0 W0 d0)
−1 d>0 W0 Σ0 W0 d0 (d>0 W0 d0)

−1 . (C8)

The proof is a standard application of the mean-value theorem (for example, Hamilton
(1994)), and omitted. The asymptotic covariance matrix Λ differs from its GMM counterpart
in that d0 is affected by the dependence of V ϑ on ϑ and {τn, kn}.

For the usual two-step GMM of Hansen (1982), under which the distance matrices are
chosen so that W0 = Σ−1

0 , we have Λ = (d>0 Σ−1
0 d0)

−1. Our setting is that of an exactly-
identified GMM estimator (nh = nϑ, d0 is of rank nϑ, and W0 is the identify matrix), so
Λ = d−1

0 Σ0(d
>
0 )−1.

D. A recursive formula for conditional moments

To facilitate our analyses of the constant component of the jump-arrival intensity, we assume
the intensity to be λ0 + λ1Vt, for some non-negative constants λ0 and λ1. Under certain
integrability conditions [Duffie, Pan, and Singleton (2000)], the date-n conditional moment-
generating function of (yn+1, Vn+1) can be derived as φ(uy, uv, Vn), with φ defined by

φ(uy, uv, v) = exp (A (uy, uv) +B (uy, uv) v) , (D1)

where, letting b = σvρuy−κv, a = −u2
y−2uy [ηs − 1/2 − λ1µ

∗]−2λ1

(
exp(uyµJ + u2

yσ
2
J/2) − 1

)
,

and γ =
√
b2 + aσ2

v , the coefficients A and B are defined by

B(uy, uv) = − a (1 − exp(−γ∆)) − uv [2γ − (γ − b)(1 − exp (−γ∆)]

2γ − (γ + b) (1 − exp(−γ∆)) − uvσ2
v (1 − exp(−γ∆))

,

A(uy, uv) = − κv v̄

σ2
v

(
(γ + b)∆ + 2 ln

[
1 − γ + b+ σ2

v uv

2γ
(1 − e−γ∆)

])

+

(
exp

(
uyµJ +

u2
yσ

2
J

2

)
− 1 − uyµ

∗
)
λ0∆ .

(D2)

From the explicitly known moment-generating function φ, conditional moments of (y, V )
can be derived using Eq. (8). In this section, we provide the following recursive scheme that
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turns out to be very useful in practice,36

Et

(
y0

t+∆V
m
t+∆

)
=

m−1∑
j=0

Cj
m−1Et

(
y0

t+∆V
j
t+∆

)
p(0,m−j)

y,v (Vt) , m ≥ 1 ,

Et

(
yn

t+∆V
m
t+∆

)
=

n−1∑
i=0

m∑
j=0

Ci
n−1C

j
mEt

(
yi

t+∆V
j
t+∆

)
p(n−i,m−j)

y,v (Vt) , n ≥ 1, m ≥ 0 ,

(D3)

where, for any n ≥ 0 and 0 ≤ i ≤ n, Ci
n = n!/i!(n− i)!, and where

p(i,j)
y,v (Vt) = A(i,j)

y,v +B(i,j)
y,v Vt , (D4)

where A
(i,j)
y,v and B

(i,j)
y,v are constants that can be derived in a recursive fashion, as follows.

We first derive B
(i,j)
y,v for i ≥ 0 and j ≥ 0. With “initial” values of B

(0,1)
y,v = exp(−κ∆),

B
(1,0)
y,v =

(
ηs − 1

2
+ λ1(J1 − µ∗)

)
f0, B

(2,0)
y,v = (1 + λ1J2)f0 − f1B

(1,0)
y,v , and B

(1,1)
y,v = σvρf0 +

1
2
κf0f1 + 1

2
σ2

vf0B
(1,0)
y,v , the following formulas enable us to calculate B

(i,j)
y,v recursively up to

any order. We have

B(0,m)
y,v =

m

2
f0σ

2
vB

(0,m−1)
y,v , m ≥ 2 , B(n,0)

y,v = λ1Jnf0 −
1

2

n−1∑
i=1

Ci
nB

(i,0)
y,v fn−i , n ≥ 3 ,

B(n,1)
y,v =

1

2
κf0fn +

1

2
σ2

vf0B
(n,0)
y,v − 1

2

n−1∑
i=1

Ci
nfiB

(n−i,1)
y,v , n ≥ 2 ,

B(n,m)
y,v =

m

2
σ2

vf0B
(n,m−1)
y,v − 1

2

n∑
i=1

Ci
nfiB

(n−i,m)
y,v , n ≥ 1 , m ≥ 2 ,

where: J1 = µJ , J2 = σ2
J +µ2

J , and Jn = Jn−1µJ +(n−1)Jn−2σ
2
J (for n ≥ 3) are the moments

of the jump amplitude. The coefficients fi and gi are given by

g0 = 2 , gn = 2γn +
1

f0

n−1∑
i=1

Γn−i gi , n ≥ 1 ,

f0 =
1 − exp(−κ∆)

κ
, f1 = g1 − (κγ1 + σvρ)f0 , fn = gn − κγnf0 , n ≥ 2 ,

where

Γ0 =
exp(−κ∆)

κ
, Γn = −κ∆

n−1∑
i=0

Ci
n−1γn−iΓi , n ≥ 1 .

36For pure affine diffusions, an alternative approach can be found in Liu (1997). Das and Sundaram (1999)
provide central moments of y, up to the fourth order, for the special case of λ1 = 0.
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and

γ1 = −
(σv

κ

)2
(
ρ
κ

σv
+ ηs − 1

2
+ λ1(J1 − µ∗)

)
, γ2 = −γ2

1 −
(σv

κ

)2 (
1 − ρ2 + λ1J2

)
,

γn = −
n−1∑
i=1

γiγn−iC
i
n−1 −

(σv

κ

)2

λ1Jn , n ≥ 3

Next, we derive A
(i,j)
y,v for i ≥ 0 and j ≥ 0. Again, with “initial” values of A

(0,1)
y,v = κv̄f0 and

A
(1,0)
y,v = (−λ0µ

∗ + λ0J1)∆ − (κγ1 + σvρ) (∆ − f0)κv̄/σ
2
v , the following formulas enable us to

calculate A
(i,j)
y,v recursively up to any order. We have

A(0,n)
y,v =

n− 1

2
σ2

vf0A
(0,n−1)
y,v , n ≥ 2 , A(n,0)

y,v = λ0J
0
n∆ − κv̄

σ2
v

(
κγn∆ + f̂n − ĝn

)
, n ≥ 2 ,

A(n,1)
y,v = −κv̄

2
f0fn − 1

2

n−1∑
i=1

Ci
nfiA

(n−i,1)
y,v , n ≥ 1 ,

A(n,m)
y,v = −κv̄ σ2(m−1)

v m!fn

(
f0

2

)m

− 1

2

n−1∑
i=1

Ĉi
n(m)fiA

(n−i,m)
y,v , n ≥ 1 , m ≥ 2 ,

where for n ≥ 1, Ĉ0
n(m) = m, Ĉn

n(m) = 1, and, for 0 < i < n, Ci
n(m) = Ci

n−1(m) +Ci−1
n−1(m).

(Notice that, Ci
n = n!/i!(n− i)! defined previously, is a special case of C i

n(m), with m = 1.)
The coefficients f̂ and ĝ are defined by

f̂1 = f1 , f̂n = fn − 1

2

n−1∑
i=1

Cn−i
n−1f̂ifn−i , ĝ1 = g1 , ĝn = gn − 1

2

n−1∑
i=1

Cn−i
n−1ĝign−i .

E. Appendix to Section 5

E.1. Tests of moment conditions

Our tests of moment conditions follow from the tests of orthogonality conditions developed
in Eichenbaum, Hansen, and Singleton (1988), and are also closely related to the Hansen
(1982) test of over-identifying restrictions (Lemma 4.1 of Hansen (1982)). Let En(εn+1) = 0
be the m = 7 moment conditions under consideration, and let ϑ̂N be the exactly-identified
IS-GMM estimators, obtained from the “optimal” moment condition En(Hn+1) = 0. To test
En(εn+1) = 0 we construct its sample analogue by

GN(ϑ̂N ) =
1

N

∑
n≤N

εn(ϑ̂N), (E1)
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where εn(ϑ̂N ) denotes evaluating the moments ε at the IS-GMM estimator ϑ̂N . Using ar-
guments similar to those following Assumption C.5 in Section 3, one can show that, under
typical technical regularity conditions,

√
N GN(ϑ0) is asymptotically normal. Applying a

standard mean-value expansion,

GN(ϑ̂N ) = GN (ϑ0) +
∂GN (ϑ)

∂ϑ

∣∣∣∣
ϑ̄N

(
ϑ̂N − ϑ0

)
, (E2)

where ϑ̄j
N is can be shown between ϑj

0 and ϑj
N , for j ∈ {1, . . . , nϑ}. Moreover, for sufficiently

large N and with probability arbitrarily close to one, we can write

ϑ̂N − ϑ0 = −
(
∂GN (ϑ)

∂ϑ

∣∣∣∣
ϑ̄N

)−1

GN(ϑ0) , (E3)

where GN = (N)−1
∑

n Hn is the sample analogue of the “optimal” moments. We know
that ∂GN (ϑ̄N)/∂ϑ converges to a constant full-rank matrix d0 in probability, under Assump-
tion C.6, using the fact that ϑ̂N is estimated under an exactly identified IS-GMM setting.

Substituting (E3) into (E2), we obtain

√
NGN (ϑ̂N)

a≈
√
N


GN(ϑ0) −

∂GN (ϑ)

∂ϑ

∣∣∣∣
ϑ̄N

(
∂GN (ϑ)

∂ϑ

∣∣∣∣
ϑ̄N

)−1

GN(ϑ0)


 , (E4)

where
a≈ means “asymptotically equivalent in distribution to.” Thus, GN(ϑ̂N ) is asymptot-

ically normal with some covariance matrix Ω. An estimator ΩN of Ω can be obtained by
estimating the covariance matrix of the right hand side of (E4).

The m moment conditions can be tested either individually or jointly. We can test the i-
th moment condition by using the fact that

√
NGi

N (ϑ̂N )/
√

(ΩN )ii is asymptotically standard
normal. We can test any subgroup of moment conditions, indexed by I, by using the fact
that, in large sample, N(GI

N (ϑ̂N))>((ΩN )I)
−1GI

N(ϑ̂N ) is distributed as a χ2 random variable
with #(I) degrees of freedom.

E.2. Estimation of interest rates and dividend yields

For the purpose of estimating the respective parameter vectors θr and θq of the short-rate
process r and the dividend-rate process q defined by (3), we use, from Datastream, weekly
time-series of 3-month LIBOR rates and S&P 500 composite dividend yields from January
1987 to December 1996.

Fixing a sampling interval ∆, and taking advantage of the fact that the conditional
density of qn given qn−1 is that of a non-central χ2 (Feller (1951) and Cox, Ingersoll, and
Ross (1985)), we estimate θq using MLE. The time series of S&P 500 composite dividend
yields is used as a proxy for {qn}. The observed T -year LIBOR rates {Rn} (converted to
continuous compounding rates) can be expressed in terms of rn by (Cox, Ingersoll, and Ross
(1985))

Rn = − 1

T

(
αr

(
0, T, θ0

r

)
+ βr

(
0, T, θ0

r

)
rn

)
,
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Table 6: ML estimates of interest rates r and dividend yields q.

κr r̄ σr κq q̄ σq

0.20 0.058 0.0415 0.24 0.025 0.0269
(0.15) (0.016) (0.0009) (0.33) (0.011) (0.0004)

Data: Weekly 3-month LIBOR rates and S&P 500 dividend yields,
Jan. 1987 to Dec. 1996.

where θ0
r denotes the true parameter vector, and where αr and βr are as defined in (B2).

The one-period conditional density pR( · |Rn−1 ; θr) of Rn given Rn−1 is therefore given by

pR
(
x
∣∣Rn−1 ; θr

)
=

T

|β(0, T, θr)|
pr

(
−xT + αr(0, T, θr)

βr(0, T, θr)

∣∣∣∣ rn−1 ; θr

)
, x ∈ R+ ,

where, as with the dividend-rate process q, the one-step conditional density pr( · | rn−1 ; θr)
of the short-rate rn is that of a non-central χ2.

The ML estimates of θr and θq are summarized in Table 6. The long-run means of r and
q are 5.8% and 2.5%, respectively. Both processes exhibit high persistence with relatively
slow mean reversions.

E.3. A Monte-Carlo simulation study

We perform a Monte-Carlo study to examine the small sample properties of the IS-GMM
estimators. Using the “true” model parameters summarized in Table 7, we simulate a joint
time series of state variables (S, V ) with weekly frequency and of the same length as the
real data, from which we price time series {Cn, C

ITM
n } of near-the-money and in-the-money

short-dated call options. The data structure, including option maturities and moneyness, is
exactly the same as that used for the SV JITM model estimation in Table 3.

Table 7: A Monte-Carlo study

κv v̄ σv ρ ηs ηv λ σJ µ∗

true 6.5 0.0150 0.30 −0.50 3.5 3.0 12.0 3.0% −19%
mean 6.6 0.0153 0.30 −0.50 3.4 3.5 12.8 3.8% −19%
std 1.4 0.0028 0.02 0.04 3.0 2.6 3.5 2.6% 3%

The mean and standard deviation are calculated from a sample of 100 Monte
Carlo simulations. For each simulation and estimation, the mean relative jump
size µ is fixed at −0.8%. Data: exactly the same data structure as the time se-
ries {Sn, Cn, CITM

n } used for the SVJ model estimation in Table 3, with the state
variables {Sn, Vn} simulated using the “true” model parameters.

Given that jump parameters are hard to pin down under the actual dynamics, we set
the mean relative jump size µ at −0.8% throughout this Monte-Carlo study. The results
obtained from 100 simulations are summarized in Table 7. Comparing the Monte-Carlo
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results with the IS-GMM results reported in Table 3 for SV J ITM , we see that the standard
errors obtained from the large-sample theory work reasonably well in the small sample. It
should be noted, however, that the standard errors reported for the jump-related estimates
are less accurate than those associated with the diffusive moments.
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