Class 3: Optimal Risk-Taking in Theory Financial Markets, Fall 2020, SAIF

Jun Pan

Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiao Tong University

November 23, 2020

Outline

- Mean-variance analysis:
 - ► Abstracting from reality, we model investors with utility functions.
 - A mean-variance investor likes expected returns μ and dislikes risk σ .
- Optimal risk and return tradeoff:
 - We ask the investor to make the optimal decision in choosing
 - \star risky asset with random return $\mathbf{R}_{\mathbf{t}}^{\mathbf{M}}$,
 - \star and riskfree asset with constant return r_f .
 - Key intuition: the optimal risk and return tradeoff.
- Diversification and the optimal risky portfolio:
 - We introduce multiple risky assets: \mathbf{R}_{t}^{1} and \mathbf{R}_{t}^{2} .
 - Key intuition: the power of diversification.
 - ► The optimal mix of R¹_t and R²_t becomes the optimal risky portfolio, which has the highest Sharpe ratio.

Policy Portfolio, Harvard Management Company, 2002

		Min	Policy	Max	Benchmark
	Domestic equities	10	15	25	80% S&P 500, 8% S&P 400, 12% Russell 2000
	Foreign equities	5	10	15	93% EAFE, 7% MSCI Small Cap ex US ex EAFE
	Emerging markets	2	5	8	80% MSCI EM Investable, 20% MSCI EM Inv + 5%
	Private equities	8	13	18	Cambridge Associates Weighted Composite
	Total	30	43	60	
	Absolute return	8	12	16	20% equity composite, 20% LIBOR+5%, 60% funds of funds
	High-yield	2	5	8	60% Sal. High-Yield/Bankrupt Weighted Composite, 40% EMBI+
	Commodities	8	13	18	23% GSCI and 77% NCREIF Timberland Index
	Real estate	6	10	14	50% CPI+6, 25% NCREIF, 25% REIT. Leverage adjusted
	Total	25	40	50	
	Domestic bonds	6	11	21	Lehman 5+ year Treasury Index
	Foreign bonds	0	5	10	J.P. Morgan Non U.S.
	Inflation-indexed	0	6	15	Salomon 5+ year TIPS
	Cash	-10	-5	10	One-month LIBOR
Financial Markets	, Fall 2020, SAIF			Class	3: Optimal Risk-Taking in Theory

Jun Pan 3 / 10

One Risky and One Riskfree

• Mean-variance investor:

$$\mathsf{Utility} = \mathsf{mean} - \frac{1}{2} \times \mathsf{risk} \; \mathsf{aversion} \times \mathsf{variance} \, .$$

- Portfolio weights:
 - Invest y in the risky portfolio $\mathbf{R}_{\mathbf{t}}^{\mathbf{M}}$
 - Leave 1 y in riskfree r_f
- Portfolio return:

$$R_t^y = y \, \mathbf{R}_t^{\mathbf{M}} + (1-y) \, r_f \, .$$

• The optimal portfolio weight:

$$y^* = \frac{\text{risk premium}}{\text{variance} \times \text{risk aversion}} = \frac{E\left(\mathbf{R}_{\mathbf{t}}^{\mathbf{M}}\right) - r_f}{\text{var}\left(\mathbf{R}_{\mathbf{t}}^{\mathbf{M}}\right) \times \text{risk aversion}}$$

Two Risky and One Riskfree

• Portfolio weights: invest w_1 in risky asset one \mathbf{R}_t^1 and w_2 in risky asset two \mathbf{R}_t^2

$$w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

• Portfolio return:

$$R_t^w = w_1 \mathbf{R_t^1} + w_2 \mathbf{R_t^2} + (1 - w_1 - w_2) r_f$$

• Risk premium:

risk premium =
$$\begin{pmatrix} E(\mathbf{R}_{t}^{1}) - r_{f} \\ E(\mathbf{R}_{t}^{2}) - r_{f} \end{pmatrix} = \begin{pmatrix} \mu_{1} - r_{f} \\ \mu_{2} - r_{f} \end{pmatrix}$$

• Variance-Covariance:

$$\Sigma = \begin{pmatrix} \text{variance 1} & \text{covariance} \\ \text{covariance} & \text{variance 2} \end{pmatrix} = \begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{pmatrix}$$

Class 3: Optimal Risk-Taking in Theory

The Optimal Risky Portfolio

• The Optimal Portfolio Weights:

$$w^* = \frac{1}{\mathrm{risk} \ \mathrm{aversion}} \times \Sigma^{-1} \times \mathrm{risk} \ \mathrm{premium}$$

• The Optimal Risky Portfolio Weights:

$$\frac{1}{\sum_{i=1}^{N} (w_i^*)} \begin{pmatrix} w_1^* \\ w_2^* \\ \vdots \\ \vdots \\ \vdots \\ w_N^* \end{pmatrix}$$

- Investors with different risk aversion hold the same optimal risky portfolio, differing only on their relative weight on the risky portfolio.
- It is also the tangent portfolio, the portfolio with the highest Sharpe ratio.

Some useful tips for matrix operation in Excel:

- \bullet the command for summation is still "+"
- the command for multiplication is "mmult"
- \bullet the command for inverse, say $\Sigma^{-1},$ is "minverse"

Some useful tips for matrix operation in Matlab:

- \bullet the command for summation is still "+"
- the command for multiplication is still "*"
- \bullet the command for inverse, say $\Sigma^{-1}\text{, is ``inv}(\Sigma)\text{''}$

Group Assignment and Presentation

Download the data and report the estimates:

- Obtain monthly returns of China's stock market from my website under Chinese Data and report μ , σ , and standard error of your estimate of μ .
- Repeat the same for the US. Use the monthly returns data I downloaded from Prof Ken French's website: US Data. The monthly return will be the column of Mkt-RF plus the column of RF. The two other factors will be useful for us in later classes.
- The above data also contains the monthly US riskfree return r_f , which is the column RF. Since in our setting, RF is a constant. So pick your sample period and use the average of the RF. We will do this exercise from the US investor's perspective. As such, we will use the US riskfree rate.
- For simplicity, let's ignore the currency risk in this exercise.
- Estimate the correlation ρ between the monthly returns of US and China. Since the correlation varies over time, please indicate the correlation you would like to use.

Group Assignment and Presentation

- Risk and return tradeoff:
 - Let's assume that the global investor's risk aversion coefficient is 4.
 - Calculate his/her optimal risky portfolio weight y^* for China and US separately.
 - Add any comments and observations you find interesting.
- The optimal risky portfolio:
 - Construct the optimal risky portfolio using US and China as the two risky assets.
 - ▶ Report the Sharpe ratio of your optimal risky portfolio.
 - Report the optimal risky portfolio weights.
 - Suppose that the global investor's risk aversion coefficient is 4. Report his/her optimal portfolio weights on US, China, and the riskfree asset.
 - Add any comments and observations you find interesting.

- Use the above calculations as the core content of your presentation.
- Add motivations on why this problem is interesting and timely.
- Add discussions and analyses on how sensitive your results are with respect to the parameters, μ , σ , ρ , and risk aversion.
- As a financial adviser to this global investor, write a one-page recommendations advising his/her of the key costs and benefits of investing in China.
- Add any further discussions that you find interesting.