Class 2: Financial Data and Empirical Estimations Financial Markets, Spring 2021, SAIF

Jun Pan

Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiao Tong University

May 15-16, 2021

Outline

- The thirst for information has made the financial industry an early adopter of data and information technology:
 - ▶ Real-time data provider: Bloomberg (since 1981) and Wind (万得).
 - Historical data provider: Datastream (since 1967).
 - ▶ Research oriented database: CRSP (since 1960), COMPUSTAT, TAQ, etc.
- Finance is about risk and uncertainty:
 - Theory: modeling random events in financial markets.
 - Data: historical experiences of random events.
 - Empirical estimation: where models meet data.
- Today, we will focus on two examples:
 - Normal distribution and empirical distribution.
 - Estimating the *expected* return $\mu = E(R_t)$.

Where to Get Data

Kenneth R. French:

BIOGRAPHY CURRICIUM VITAE WORKING PAPERS DATA LIBRARY CONSULTING RELATIONSHIPS FAMA I FRENCH FORUM

CONTACT INFORMATION

Wharton Research Data Services (WRDS)

1 Your Subscriptions	Not Subscribed	Cour Queries		
Bank Regulatory	» Fama Fren	ch & Liquidity	» OTC Markets	
Blockholders	Factors		» Penn World Tables	
CBOE Indexes	» Federal Re	serve Bank	» PHLX	
COMPUSTAT	» GSIOnline		» Public	
COMPUSTAT Trial	× IBES		» SEC Order Execution	
CRSP	» IHS Global	Insight	» TAQ	
CUSIP	» Markit Trial		» Thomson Reuters	
DMEF Academic Data	» Mergent FI	SD	» TRACE	
Dow Jones	» MFLINKS		» WRDS SEC Analytics Suite	
Eacted Trial	» Option Met	rics	Trial	
Faciset fild	 Option Met 	rics Trial	» Zacks Trial	

Class 2: Financial Data and Empirical Estimations

Financial Markets, Spring 2021, SAIF

Computing Realized Stock Returns

- For a publicly traded firm, we can get
 - its stock price P_t at the end of year t.
 - its cash dividend D_t paid during year t.
- At the end of year t, we calculate the **realized** return on the stock:

$$R_t = \frac{P_t + D_t - P_{t-1}}{P_{t-1}} = \frac{P_t - P_{t-1}}{P_{t-1}} + \frac{D_t}{P_{t-1}}$$

- Returns = capital gains yield + dividend yield.
- For the US markets, the best place to get reliable and clean holding-period returns is CRSP. I have applied a WRDS account for our class, which gives you access to CRSP.

- For any financial instrument, the single most important number is its **expected** return.
- Suppose right now we are in year t, let R_{t+1} denote the stock return to be realized next year. Our investment decision relies on the **expectation**:

$$\mu = E\left(R_{t+1}\right) \,.$$

- Just to emphasize, μ is a number, while R_{t+1} is a random variable, drawn from a distribution with mean μ and standard deviation σ .
- To estimate this number μ with precision is the biggest headache in Finance.

Estimating the Expected Return μ

• We estimate μ by using historical data:

$$\hat{\mu} = \frac{1}{N} \sum_{t=1}^{N} R_t \, .$$

- It is as simple as taking a sample average.
- Why can this sample average of *past* realized returns help us form an expectation of the *future*?
- Because our assumption that history repeats itself. Each R_t in the past was drawn from an identical distribution with mean μ and standard deviation σ .

Time Series of Annual Stock Returns

Annual Stock Returns (in Percent) from 1927 through 2015

Scenarios and Their Likelihood

Learning from History: Possible Events and Their Occurence

Probability Distribution of a Random Event

Financial Markets, Spring 2021, SAIF

The Estimator Has Noise

• We use historical returns to estimate the number μ :

$$\hat{\mu} = \frac{1}{N} \sum_{t=1}^{N} R_t$$

- Recall that R_t is a random variable, drawn every year from a distribution with mean μ and standard deviation σ .
- As a result, $\hat{\mu}$ inherits the randomness from R_t . In other word, it is not really a number: var $(\hat{\mu})$ is not zero.
- If this variance $var(\hat{\mu})$ is large, then the estimator is noisy.

The Standard Error of $\hat{\mu}$

• Let's first calculate $var(\hat{\mu})$:

$$\operatorname{var}\left(\frac{1}{N}\sum_{t=1}^{N}R_{t}\right) = \frac{1}{N^{2}}\sum_{t=1}^{N}\operatorname{var}(R_{t}) = \frac{1}{N^{2}} \times N \times \sigma^{2} = \frac{1}{N}\sigma^{2}$$

• The standard error of $\hat{\mu}$ is the same as std $(\hat{\mu})$:

standard error
$$= \frac{\operatorname{std}(R_t)}{\sqrt{N}} = \frac{\sigma}{\sqrt{N}}$$

Estimating μ for the US Aggregate Stock Market

- Using annual data from 1927 to 2014, we have 88 data points.
- The sample average is avg(R) = 12%. The sample standard deviation is std(R) = 20%.
- The standard error of $\hat{\mu}$:

s.e. = std(
$$R$$
)/ \sqrt{N} = 20%/ $\sqrt{88}$ = 2.13%

• The 95% confidence interval of our estimator:

 $[12\% - 1.96 \times 2.13\%, 12\% + 1.96 \times 2.13\%] = [7.8\%, 16.2\%]$

• The t-stat of this estimator is (signal-to-noise ratio),

t-stat =
$$\frac{\operatorname{avg}(R)}{\operatorname{std}(R)/\sqrt{N}} = \frac{12\%}{2.13\%} = 5.63$$
.

The Distributions of R_t and $\hat{\mu}$

Time Series of Monthly Stock Returns

Financial Markets, Spring 2021, SAIF

Class 2: Financial Data and Empirical Estimations

Jun Pan 14 / 20

Estimating μ Using Monthly Returns

- Since the standard error of $\hat{\mu}$ depends on the number of observations, why don't we use monthly returns to improve on our precision?
- \bullet Using monthly aggregate stock returns from January 1927 through December 2011, we have 1020 months. So N=1020!
- The mean of the time series is 0.91%, and std is 5.46%.
- So the standard error of $\hat{\mu}$ is:

s.e.
$$= 5.46\% / \sqrt{1020} = 0.1718\%$$

• The signal-to-noise ratio:

$$\text{t-stat} = \frac{0.91\%}{0.1718\%} = 5.30$$

• We increased N by a factor of 12. Yet, the t-stat remains more or less the same as before.

Financial Markets, Spring 2021, SAIF

Jun Pan 15 / 20

US and China Stock Returns

	CRSP VW	CN All	CN LG	CN Med	CN SM	
		Monthly Returns 1993-2018				
μ	0.83	1.16	0.99	1.41	2.02	
	[3.45]	[1.85]	[1.65]	[2.00]	[2.60]	
σ	4.23	11.05	10.56	12.49	13.74	
		Monthly Returns 2000-2018				
μ	0.52	0.86	0.80	1.02	1.43	
	[1.79]	[1.60]	[1.52]	[1.61]	[2.08]	
σ	4.33	8.16	7.96	9.60	10.42	
		Monthly Returns 2010-2018				
μ	1.00	0.28	0.21	0.40	0.99	
	[2.81]	[0.44]	[0.34]	[0.48]	[1.07]	
σ	3.71	6.59	6.38	8.60	9.59	

The US and China Correlation in Equity Markets

year	corr (%)	t-stat
2010	43	5.25
2011	37	3.35
2012	28	3.20
2013	39	2.75
2014	-11	-0.84
2015	35	1.51
2016	26	1.73
2017	-7	-0.51
2018	44	4.83
2019	40	3.28
2020	44	4.54

* Rolling windows of 5-day returns; t-stats corrected for serial correlations.

Financial Markets, Spring 2021, SAIF

The Main Takeaways

- The financial industry has always been data intensive:
 - Data contains information.
 - Data contains noise.
- A good practitioner knows how to extract signal from noise:
 - Knowing how to read tables with standard errors and t-stats is essential.
 - Basic econometrics and statistics will be an important differentiator.
- Questions to be answered by Wednesday's student presentations:
 - What are the means and standard deviations of monthly returns on the US and Chinese equity markets?
 - What is the correlation between the monthly returns?
 - How accurate are these estimates?