Class 1: Alpha, Beta, and the CAPM

Financial Markets, Spring 2021, SAIF

Jun Pan

Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiao Tong University

May 22-23, 2021

Outline

- The risk that matters:
 - ► The central insight of the CAPM is that investors are only rewarded for bearing systematic risk.
 - Idiosyncratic risk, uncertainty that can be diversified away, deserves no risk premium.
- Running regressions to estimate the CAPM alpha and beta:
 - lacktriangle We will use the aggregate stock returns, R_t^M , as a proxy for the systematic risk.
 - ightharpoonup The key regression to be used throughout the semester for any portfolio i:

$$R_t^i - r_f = \alpha + \beta \left(R_t^{\mathsf{M}} - r_f \right) + \epsilon_t \,.$$

• Key concepts: α , β , R-squared, standard error, and t-statistics.

The CAPM

- The CAPM identifies one single portfolio, the market portfolio \mathbb{R}^M , to be the only source of risk that matters.
- The market risk premium $= E(R^M) r_f$, where r_f is the riskfree rate.
- So far, our estimate for $E(R^M)$ is around 12% per year (and very noisy). The riskfree rate is on average 4% per year. So a good estimate for the market risk premium is around 8%.
- The risk of each individual stock, say GE, is measured *not by its own volatility* but by its *exposure* to the market risk:

$$\beta^{GE} = \frac{\text{covariance}\left(R^{GE}, R^{M}\right)}{\text{variance}\left(R^{M}\right)}$$

• The reward is proportional to the risk:

$$E(R^{GE}) - r_f = \beta^{GE} \times (E(R^M) - r_f)$$

Running Regression to Estimate the CAPM β :

- Identify an index as the market portfolio. Typical choice: the CRSP value-weighted index (e.g., the academics), the S&P 500 index (e.g., Merrill Lynch's beta book), and the NYSE index (e.g., Value-line).
- Identify the stock or portfolio of interest.
- Collect time-series of returns:
 - For the market portfolio: R_t^M , t = 1, 2, 3, ... T.
 - For the test portfolio: R_t^{GE} , $t=1,2,3,\ldots T$.
- Run the following regression (typically monthly data over a five-year rolling window):

$$R_t^{GE} - r_f = \alpha + \beta \left(R_t^{\mathsf{M}} - r_f \right) + \epsilon_t$$

Two Sources of Uncertainty in a Stock

 By running this regression, we break the total uncertainty in a stock into two components:

$$R_t^{GE} - r_f = \alpha + \beta \left(R_t^M - r_f \right) + \epsilon_t$$

- One is due to its exposure to the market portfolio: $\beta \left(R_t^M r_f \right)$.
- ▶ The other is idiosyncratic, as captured by the regression residual ϵ_t .
- By construction, the residual of a regression is uncorrelated with the explanatory variable: $cov(R_t^M, \epsilon_t) = 0$.
- The R-squared tells us how much of GE's variance can be explained by the variance in the market portfolio:

$$\mathsf{R-squared} = \frac{\beta^2 \operatorname{var}(R^M)}{\operatorname{var}(R^{GE})} = \frac{\beta^2 \operatorname{var}(R^M)}{\beta^2 \operatorname{var}(R^M) + \operatorname{var}(\epsilon)}$$

The CAPM α

If you re-arrange that regression equation, you get

$$\alpha = R_t^{GE} - r_f - \beta \left(R_t^M - r_f \right) - \epsilon_t \,.$$

• Taking expectations on both sides, we have

$$\alpha = E\left(R_t^{GE} - r_f\right) - \beta E\left(R_t^M - r_f\right) ,$$

 α is the *expected* excess stock return, after taking out the reward associated with the systematic component.

- \bullet So testing the CAPM pricing formula is the same as testing whether or not α is zero.
- Conversely, if we can construct many portfolios with positive and statistically significant α 's, then the CAPM pricing formula is under a severe challenge.

Using t-stat

$$t\text{-stat} = \frac{\text{estimate}}{\text{s.e.}}$$

- In finance, we often use historical data to estimate financial models. The model parameters (e.g., α and β) are always estimated with noise.
- The standard errors and t-stat inform us on the precision. We can then decide whether or not to take the estimates seriously.
- As a rule of thumb, we take an estimate seriously if the absolute value of its t-stat is larger than 1.96:

$$|\mathsf{t\text{-}stat}| \ge 1.96$$

• If it is less than 1.96, then we don't take it as seriously: statistically insignificant from zero.

Alpha, Beta, and R-Squared

Ticker	Start	mean (%)	std (%)	Alpha (%)	Beta	R2 (%)
GE	192701	1.14 [4.58]	7.98	0.13 [0.86]	1.18 [43.62]	65.12
AAPL	198101	2.28 [3.10]	14.19	1.13 [1.73]	1.45 [10.25]	22.08
BRK	197611	2.04 [5.79]	7.21	1.23 [3.87]	0.68 [9.80]	18.69
ONXX	199606	3.10 [1.71]	24.72	2.26 [1.31]	1.52 [4.38]	9.36
GOOG	200409	2.72 [2.23]	11.46	2.15 [2.00]	1.10 [5.04]	22.63

All time series end on 201112

Alpha, Beta, and R-Squared

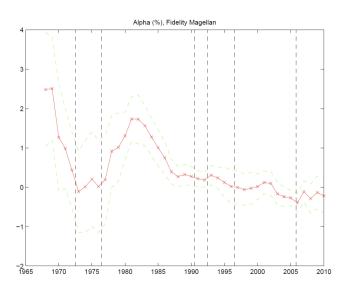
Ticker	Start	mean (%)	std (%)	Alpha (%)	Beta	R2 (%)
GE	200409	0.03 [0.03]	9.01	-0.64 [-1.02]	1.38 [10.88]	57.63
AAPL	200409	4.30 [3.54]	11.39	3.68 [3.60]	1.25 [6.06]	29.70
BRK	200409	0.45 [0.80]	5.27	0.12 [0.24]	0.44 [4.22]	16.99
ONXX	200409	1.76 [0.85]	19.43	1.24 [0.62]	0.97 [2.37]	6.08
GOOG	200409	2.72 [2.23]	11.46	2.15 [2.00]	1.10 [5.04]	22.63

All time series start on 200409 and end on 201112

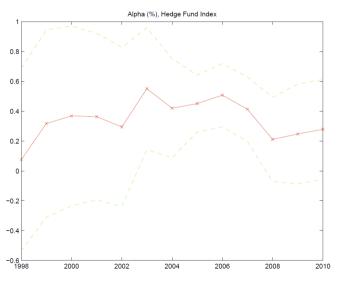
Wall Street's Search for Alpha

- Searching for investment opportunities with positive alpha is the goal of every active fund manager.
- One thing for sure, without taking on idiosyncratic risk ϵ , a portfolio manager's alpha is always zero. So effectively, he is hoping to get α as a reward for holding ϵ_t .
- In the world of the CAPM, this is impossible.
- So do active fund managers actually provide positive α ? We need to look into the data to find out.

Alpha of a Mutual Fund



Alpha of Hedge Funds



Warren Buffett and Berkshire Hathaway

Monthly returns of BRK.A from November 1976 through December 2008. The sample mean is 1.69% and the standard deviation is 7.29%.

alpha	1.36%	1.11%
Market beta	[4.04] 0.71 [9.50]	[3.38] 0.93 [11.60]
SMB beta	[]	-0.26
HML beta		[-2.42] 0.58 [4.67]
R^2	19.10%	26.33%

Subsample Analysis

	First Half 197611-199212		Second Half 199301-200812		
alpha	1.83% [3.69]	1.49% [2.99]	0.84% [1.91]	0.69% [1.74]	
Market beta	0.93 [8.70]	1.04 [8.38]	0.46 [4.53]	0.70 [7.16]	
SMB beta		0.31 [1.54]		-0.57 [-4.83]	
HML beta		0.58 [2.64]		0.44 [3.18]	
R^2	28.28%	31.68%	9.72%	29.81%	