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Abstract

We construct an option-implied Crash Index (CIX) by exploring the pricing differ-

ence between the out-of-the-money (OTM) put options and at-the-money (ATM) op-

tions, above and beyond a jump-diffusion model (SVJ) that incorporates both stochas-

tic volatility and jump risk and estimated using the joint time-series of the S&P 500

index and ATM options. The construction of our CIX index is analogous to that of

the VIX index, except that our focus is on the mean jump size µ of the SVJ model im-

plied by OTM puts, which are especially sensitivity to crash risk. Empirically, we find

that the CIX index is closely related to the non-parametric option-implied skewness,

and positively correlated with the put/call volume ratio. Post 2008, the CIX index

has increased significantly – the mean jump size µ decreases from the pre-2008 level

of -14% to the post-2008 average of -17%. Consistent with the informational channel,

we find that, after large increases in CIX, the next-day returns of the S&P 500 index

are significantly negative. By contrast, large increases in VIX are followed by large

positive returns, indicating a different economic channel.

*Gao (jxgao@saif.sjtu.edu.cn) and Pan (junpan@saif.sjtu.edu.cn) are from the Shanghai Advanced In-
stitute of Finance at Shanghai Jiao Tong University. We benefited from extensive discussions with Jun
Liu.
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1 Introduction

Since the seminal work of Black and Scholes (1973) and Merton (1973), the Black-Scholes

option pricing model has been extended from its complete-market setting to include addi-

tional risk factors – the most prominent of which are stochastic volatility and crash risk.1

Meanwhile, financial markets since 1973 have witnessed the widespread proliferation of op-

tion trading, and, among others, options on the S&P 500 index emerge as an important

vehicle for the hedging and speculation of the risk factors embedded in the S&P 500 index.

Applying the models to the data, empirical studies on the pricing of S&P 500 index options

document the important presence of stochastic volatility and particularly crash risk in the

the S&P 500 index, allowing the market-traded option prices to help shed light on the single

most important equity index in the global market (e.g., Bakshi et al. (1997), Bates (2000),

and Pan (2002)).

Our paper builds on this active development of theory and practice since Black and

Scholes (1973). Focusing on the crash component of the S&P 500 index, our main objective

is to apply the jump-diffusion models to the market-traded option prices to construct a Crash

Index (CIX). Our approach is analogous to the construction of the Volatility Index (VIX),

which can be traced directly to the volatility parameter σ in the Black-Scholes option model.2

In fact, the VIX index initially developed by Chicago Board Options Exchange (CBOE) in

1993 was the Black-Scholes volatility implied by the market prices of the 30-day at-the-money

(ATM) options. Frequently quoted and monitored as a fear gauge, the VIX index has been

the most impactful empirical product of the Black-Scholes model. Likewise, our CIX index is

an empirical product of the jump-diffusion models, extracted from the market-traded option

prices to capture the crash component of the S&P 500 index.

Central to the class of jump-diffusion models is the jump parameter µ first introduced

by Merton (1976) to measure the mean jump size conditioning on a Poisson jump arrival.

The 1987 stock market crash, when the S&P 500 index dropped by over 20% in just one

day, gave this crash parameter µ its empirical relevance and importance. Under the risk-

neutral measure, a more negative µ adds more crash risk, fattens the left tail of the return

1The first jump-diffusion model for option pricing was developed by Merton (1976), and the first pure-
jump model can be found in Cox and Ross (1976). Variants of the stochastic volatility models can be found in
Hull and White (1987), Stein and Stein (1991), and Heston (1993). Combining Merton’s jump and Heston’s
stochastic volatility, researchers including Bates (2000), Bakshi et al. (1997), and Duffie et al. (2000) build
option-pricing models that include both jumps and stochastic volatility.

2In the Black-Scholes option pricing formula, the volatility parameter σ plays a central role in the pricing
of options. As a first-order approximation, the price of an at-the-money (ATM) option is linear in σ, and
the link between the two is such that options traded in the over-the-counter markets are quoted in σ instead
of dollars and centers.
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distribution, and makes the out-of-the-money (OTM) put options more expensive. Just as

the volatility parameter σ in the Black-Scholes model forms the theoretical foundation for the

VIX index, the jump parameter µ in the jump-diffusion models is foundational to our CIX

index. Moreover, while the VIX index focuses on the ATM options to extract information

with respect to the volatility parameter σ, our CIX index focuses on the OTM put options

to estimate the crash parameter µ.

For the construction of the CIX index, we work with the option pricing model of Bates

(2000), which extends the jump-diffusion model of Merton (1976) to incorporate stochas-

tic volatility and allow the jump-arrival intensity to be dependent on the latent stochastic

volatility. For brevity, we refer to our model as the stochastic volatility model with jump

(SVJ). Unlike the Black-Scholes model, the estimation of the SVJ model is more involved

as it contains a latent state variable and an array of model parameters that govern the joint

dynamics of the stock prices and stochastic volatility and the market prices of the risk fac-

tors. Following Pan (2002), we use the joint time-series of the S&P 500 index and options

to simultaneously estimate the model parameters and the time-series of the state variable

(i.e., the latent volatility). On each trading day, the latent volatility is a function of the

ATM option price observed on that day and the unknown model parameters including the

mean jump size µ. We then estimate the model parameters using the moment conditions

constructed from the joint dynamics of stock prices and stochastic volatility.

Equipped with the model estimation, we construct the Crash Index by exploring the

pricing discrepancy between OTM puts and ATM options above and beyond the SVJ model.

On each trading day, we plot a crash curve (i.e., option-implied µ) using options of the same

time to expiration but differing strike prices. This is analogous to the volatility curve (i.e.,

option-implied σ), but instead of using the Black-Scholes model to estimate the option-

implied σ across the varying strike prices, we use the SVJ model to estimate the option-

implied µ across strike price, while keeping the other model parameters and the estimated

latent state variable fixed. Central to our CIX index is the difference between the crash

parameter µ implied by the OTM puts and that implied by the ATM option.3

As an intuitive illustration of what is captured by our CIX index, we can go back to the

original Black-Scholes model. If the market-traded options are priced according to the Black-

Scholes model, then the volatility curve would be flat. The fact that the volatility curve is

3It is worth noting that our methodology for implying crash risk adjusts for the impact of stochastic
volatility, thereby distinguishing between jump crash risk and volatility as discrete contributors to the pricing
discrepancy between OTM and ATM options. Our methodology also allows the jump arrival intensity to
be dependent on the stochastic volatility – an empirical fact document by Pan (2002) to be important to
reconcile the joint dynamics of the S&P 500 index and options. Our empirical findings corroborate such
distinctions, revealing markedly different impacts of the CIX and VIX on asset prices.
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not flat calls for the class of jump-diffusion models such as the SVJ model to incorporate

stochastic volatility and crash risk. Likewise, within the context of our SVJ model, if the

market-traded OTM puts and ATM options price in the same mean jump size µ , then the

crash curve would be flat. Conversely, by exploring the difference in µ implied by OTM

puts and ATM options, we zero in on the unique crash information, if any, embedded in

the pricing of the OTM puts. Given their sensitivity to tail events, the OTM puts on the

S&P 500 index are among the most actively traded index options used by investors to hedge

and speculate on the crash risk. By focusing on such options, our CIX index is designed to

extract the crash risk anticipated or priced by such investors.

Our empirical results can be summarized as follows. First, applying the estimated SVJ

model to the short-dated OTM puts to back out the respective option-implied crash parame-

ter µ, we find that, relative to the ATM-implied µ, such option-implied crash parameters are

consistently more negative, particularly for the most actively traded OTM puts with strike

prices ranging from 95% to 98% of the spot price. This pattern aligns with the expectation

that the most frequently traded OTM put options would be highly sensitive to anticipated

future crashes and motivates us to construct CIX as an average of −µ implied by OTM puts,

focusing on strike prices within the most informative range. Considering that the disparity

between OTM puts and ATM options is influenced by both the volatility level and µ, our use

of the SVJ model in constructing the CIX index allows us to take out the volatility impact

and isolate the effect of µ. From this perspective, our CIX index is a more precise measure

of crash risk implied by OTM puts.4

Second, utilizing the non-parametric approach of Breeden and Litzenberger (1978), we

construct a skew index, previously employed by Bakshi et al. (2003) to analyze cross-sectional

option pricing. Our CIX index undergoes further validation through this non-parametric

measure of option-implied skewness: assuming the data-generating process aligns with our

SVJ models, the skewness should be primarily driven by the level of µ and the jump arrival

intensity. Indeed, we observe a significantly positive relationship between CIX and option-

implied skewness. We also find that the skewness index is influenced by VIX, consistent

with our model’s specification that the jump arrival intensity is linear in the volatility level.

By contrast, our CIX index is found to be uncorrelated with the VIX index, consistent with

its focus on the crash parameter µ. While both measures are complimentary to each other,

the parametric approach has the advantage to separately model and estimate the effects of

volatility and crash risk. Moreover, while the non-parametric approach relies on the entire

4Compared with their counterparts in in the σ space, the difference in option-implied volatility between
OTM puts and ATM options can be driven by the presence of stochastic volatility and the stochastic jump
arrival intensity.
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collection of options to estimate the skewness, our approach can estimate the crash parameter

for each option, allowing us to focus on those contracts that are informationally richer.

Third, we extend our analysis to the time-series dynamics of CIX, linking it to the

divergence between OTM and ATM options. We quantify the time-series of this divergence

by the disparity in Black-Scholes implied volatility between ATM options and the average of

OTM options, within the same range of strike prices used to formulate CIX. As anticipated,

this implied volatility spread is elucidated by both CIX, representing crash risk, and VIX,

symbolizing volatility risk. Moreover, we discover that CIX is intimately correlated with

non-parametric option-implied skewness and the put/call option trading volume ratio. In

alignment with our expectation that CIX does not associate with VIX as an independent

risk factor, it also remains unconnected to other risk factors encapsulated in macroeconomic

variables, such as treasury term spread, corporate bond default spread, etc. An intriguing

observation is that our CIX increased significantly after the 2008 global financial crisis, with

the mean CIX rising from 14% to 17%, indicating a perceptible shift in crash risk anticipation

subsequent to the crisis.

Finally, using the CIX index to predict stock market returns, we find that a sudden in-

crease in CIX forecasts a negative S&P 500 index return on the next day. This predictability

is distinct from that of the VIX index, as presented in Hu et al. (2022), where a sizable surge

in the VIX often signals positive returns for the S&P 500 index. We observe that an extreme

surge in CIX precedes a significant decline in the S&P 500 index return by 48 basis points,

a sharp contrast to the overall sample average of 3-4 basis points. Conversely, our findings

show that a surge in VIX is associated with a marked upswing in the stock market return

by 59.88 basis points. This contrast between the CIX and VIX in their relationship with

subsequent stock market performance emphasizes the importance of distinguishing jump risk

from stochastic volatility risk, a central theme our paper explores. Further, we employ a

predictive regression framework to control for the VIX’s surging effect and identify a neg-

ative predictability, particularly concentrated at times when unanticipated shocks impact

the CIX. This predictability remains consistent across various methods we use to assess the

shocks to CIX.

In conclusion, our empirical research underscores a robust inverse correlation between the

Crash Index (CIX) and future stock market returns. This pronounced link is particularly

evident during episodes of abrupt and substantial CIX fluctuations, underscoring the vital

role of heightened forward-looking crash risk as a key short-term factor in asset pricing

dynamics.

The rest of paper is organized as follows. Section 2 presents our SVJ model and the

according model estimation. Section 3 illustrate our construction of the CIX index. Section 4
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delves into empirical results of testing the implication of CIX. Section 5 concludes.

Related Literature – Our research belongs to the classical option pricing literature, be-

ginning with Black and Scholes (1973) and Merton (1973) and evolving with the works of

Merton (1976), Cox and Ross (1976), and Cox et al. (1979). Our work builds on the explo-

ration of models with stochastic state variables, such as stochastic volatility and tail risks,

as seen in Heston (1993), Duffie et al. (2000), Bates (2000), Bakshi et al. (1997), and Pan

(2002).

As an empirical study on the option pricing model, our paper intersects with the literature

focused on the estimation methodologies of stochastic volatility models and state-dependent

jump models. Chernov and Ghysels (2000) apply an indirect inference approach to stochastic

volatility models, while Eraker et al. (2003) employs a Markov chain Monte Carlo method

to jointly estimate jumps and stochastic volatility. Furthermore, alternative models such as

Bates (2006), and Christoffersen et al. (2012), assume that volatility follows a GARCH-class

dynamic, which enables a filtering approach to estimate volatility and subsequently separate

the jumps. Our empirical estimation differs from these approaches by adopting the joint

time-series approach of Pan (2002).

Our research also aligns with the asset pricing literature that derives non-parametric mea-

sures of jump or crash risk from option data. Given the negative skewness of stock returns,

Bakshi et al. (2003) utilized the insights of Breeden and Litzenberger (1978) to conceive

an option-implied skewness measure. Cremers et al. (2015) construct a vega-neutral option

portfolio to approximate stock return jumps and use cross-sectional stocks to test its market

price of risk. By taking advantage of the parametric jump-diffusion model, our paper differs

from the non-parametric approach commonly found in literature when identifying jump risk.

In relation to the non-parametric estimation of higher moments (i.e., the skewness), our

approach allows us to separately identify the contributions of stochastic volatility and jump

risk.

Finally, our work is associated with asset pricing models that scrutinize how investors

price crashes or rare disasters within a structural framework (for instance, Liu et al. (2005),

Gabaix (2012), Wachter (2013)). Unlike these studies, which calibrate a static model for

jump risks, our paper requires a tractable framework to develop a measure of dynamic jump

risk and/or jump size.
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2 Model and Model Estimation

2.1 The Data Generating Process

In this study, we employ the same model of stock return dynamics as outlined in Bates

(2000) and Pan (2002). The stock price St over time t follows the data-generating process

delineated below,

dSt =[rt − qt + ηsVt + λVt (µ− µ∗)]St dt+
√
VtSt dW

(1)
t

+ dZt − µStλVt dt
(1)

dVt = κv (v̄ − Vt) dt+ σv
√
Vt

(
ρdW

(1)
t +

√
1− ρ2 dW

(2)
t

)
, (2)

where r denotes the interest-rate process, q signifies the dividend yield, W =
[
W (1),W (2)

]⊤
constitutes an adapted standard Brownian motion in R2, and Z represents a pure-jump

process.5

Supported by literature, this model underscores two crucial attributes: it fits the contem-

poraneous dynamic of stock returns and option prices, and it ensures tractability for solving

option price and estimating a parsimonious set of parameters. Firstly, stochastic volatility

in Eq. (2) drives the stock return dynamic as a latent variable. The correlation coefficient

ρ encapsulates the characteristic of this process, i.e., stock returns are typically negatively

correlated with volatility fluctuations. More specifically, Vt is a one-factor ”square-root”

process, characterized by a stable long-term mean v̄, mean-reversion rate κv, and volatility

coefficient σv.
6

Secondly, jump risk in the stock price Zt features as a state-dependent jump intensity

λVt. Here, Z consists of two elements: random jump-event times and random jump sizes.

The jump-event times {Ti : i ⩾ 1} are dictated by a state-dependent stochastic intensity

process {λVt : t ⩾ 0} for some non-negative constant λ. At the ith jump event, the stock

price jumps from S (Ti−) to S (Ti−) exp (U s
i ), where U

s
i is normally distributed with mean

µJ and variance σ2
J , independent of W , inter-jump times, and U s

j for j ̸= i. The conditional

probability at time t of a jump prior to t+∆t is approximately λVt∆t for a small ∆t. When a

5Unlike Pan (2002), we treat the interest rate and dividend yield as time-varying constants for simplicity.
This approach doesn’t hinder our ability to fit the short-term option price. In empirical tests, we update
the interest rate and dividend yield using daily data.

6Note that we use the term ”volatility” to denote variance V , often seen as the standard deviation of
returns. This terminology shift should not lead to confusion.
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jump event occurs, the mean relative jump size is µ = E (exp (U s)− 1) = exp (µJ + σ2
J/2)−1.

Combining the effects of random jump timing and sizes, the final term µStλVt dt in Eq. (1)

offsets the instantaneous change in expected stock returns introduced by the pure-jump

process Z.

Extending the existing literature that employs this or related data-generating processes

for explicating the joint dynamic of stock and option prices, our research deviates to explore

a unique economic question. This paper specifically delves into the option-implied equity risk

premium from the jump process, encapsulated by the term λVt (µ− µ∗) in Eq. (1), where

µ is the jump size in the stock price dynamic and µ∗ is the jump size under a risk-neutral

measure. Assuming a known Vt implied from option prices, µ− µ∗ captures a market price

of jump risk, distinguishing itself as a different source of risk from volatility. Therefore,

our study poses the question: given the same level of volatility, what ramifications does

a heightened priced jump risk entail? To focus on this question, we take the −µ∗ as the

key parameter to capture the magnitude of crash risk since the jump size µ under physical

measure is small and µ∗ reflects how investors price the downside risk.

Recognizing a comprehensive literature on the impact of option-implied volatility, our

approach distinctly bifurcates the effects of the option-implied volatility and jump size −µ∗.

Hence, our methodology underscores the novelty of our research question while maintaining

alignment with the existing theoretical structure. Interestingly, we observe distinct behav-

ior of our jump risk measure compared to the implied volatility, regardless of whether it’s

measured by our implied-state approach or model-free approach prevalent in the literature.

This difference is discussed later in this section with relevant examples.

To set the stage for our subsequent analysis on option-implied jump size, we will discuss

the price of risk, as represented by the equity risk premium formula in Eq. (1), and elaborate

on the derivations of option pricing in the following sections.

2.2 The Market Prices of Risks

The model adopted in our study does not guarantee a complete market with respect to the

risk-free bank account, the underlying stock, and a finite number of options contracts. This

is particularly due to the random jump size in the stock price dynamics. For our research

objectives, we employ a plausible pricing kernel that accommodates the three primary sources

of risk: diffusive price shocks, jump risks, and volatility shocks.

For clarity, this section presents the ”risk-neutral” price dynamics as defined by our

selected pricing kernel.7 Let Q be the equivalent martingale measure associated with our

7The pricing kernel we apply is the same as derived in the Appendix A of Pan (2002). Specifically,
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selected pricing kernel. Under Q, the dynamics of (S, V ) are expressed as:

dSt = [rt − qt]St dt+
√
VtSt dW

(1)
t (Q) + dZQ

t − µ∗StλVt dt (3)

dVt = [κv (v̄ − Vt) + ηvVt] dt+ σv
√
Vt

(
ρdW

(1)
t (Q) +

√
1− ρ2 dW

(2)
t (Q)

)
, (4)

where W (Q) =
[
W (1)(Q),W (2)(Q)

]
represents a standard Brownian motion under Q. [A

formal definition of W (Q) is provided in Appendix A.] The pure-jump process ZQ has a

distribution under Q identical to the distribution of Z under P , as defined in Eq. (1), except

that under Q, the jump size µ∗ accommodates a risk premium for jump uncertainty. With

all other factors equivalent to the physical measure dynamic, the risk-neutral mean relative

jump size is µ∗ = EQ (exp (U s)− 1) = exp (µJ + σ2
J/2)−1. Echoing the discussion regarding

the data-generating process, we observe that the final term µ∗StλVt dt in Eq. (2.4) serves as

a compensator for the pure-jump process ZQ under the risk-neutral measure.

Our specification of the risk-neutral dynamics of (S, V ) facilitates an intuitive under-

standing of the pricing of various risk factors. Focusing first on the market prices of jump

risks, we see that by permitting the risk-neutral mean relative jump size µ∗ to deviate from

its data-generating counterpart µ, the time- t expected excess stock return compensating

for jump-size uncertainty is λVt (µ− µ∗).8 In light of the widely accepted fact that stock

returns are negatively skewed, the physical jump size is typically negative. Moreover, in our

specification, the risk of a sharp decline, or ”crash risk,” is positively priced in the equity

return, as captured by a more negative jump size under the Q measure, i.e. µ − µ∗ > 0.

”Conventional” return risks, or ”Brownian” shocks, carry premiums parameterized by ηsVt

for a constant coefficient ηs. This is similar to the risk-return trade-off in the CAPM frame-

work. Premiums for ”volatility” risks, however, are less transparent, given that volatility is

not directly tradable. Due to the inherent volatility of volatility itself, options may reflect

an additional volatility risk premium. Volatility risk is priced via the supplementary term

ηvVt in the risk-neutral dynamics of V in Eq. (4). A positive coefficient ηv implies that the

time- t instantaneous mean growth rate of the volatility process V is ηvVt higher under the

the jump sizes Uπ
i are assumed to be i.i.d. normal with mean µπ and variance σ2

π, and are assumed to
be independent of the Brownian motions, and inter-jump times. We enforce the constraint that the mean
relative jump size in the state-price density to be zero. That is, µπ + σ2

π/2 = 0. This constraint is, in fact,
translated to a zero jump-timing risk premium.

8Our specification primarily focuses on the risk premium for jump-size uncertainty, while overlooking the
risk premium for jump-timing uncertainty by assuming λ∗ = λ. This implies that all jump risk premiums are
subsumed by the jump-size risk premium coefficient µ−µ∗. We adopt this specification largely for empirical
convenience, as identifying the term λ∗µ∗ can be cumbersome.
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risk-neutral measure Q than under the data-generating measure P . Given that option prices

respond positively to the volatility of the underlying price in this model, option prices rise

with ηv.

2.3 Option Pricing

Our paper simplifies the option pricing solution compared to Pan (2002) by assuming that the

interest rate and dividend yield are time-varying constants. This simplification, as pointed

out in the literature, does not impact our analysis since the stochastic dynamics of the

interest rate and dividend yield play a minor role in fitting option prices, especially for

short-term options. We denote the set of the model parameters as:

ϑ = (κv, v̄, σv, ρ, λ, µ, σJ , η
s, ηv, µ∗) (5)

Let Ct represent the price at time t of a European-style call option on S, with a strike

price of K and an expiration date at T = t+ τ . By taking advantage of the affine structure

of (lnS, V, r, q) and utilizing the transform-based approach (refer to, for example, Heston

(1993), Bakshi et al. (1997), Bakshi and Madan (2000), Duffie et al. (2000)), we can express

Ct as follows:

CSVJ
t = EQ

t

[
exp

(
−
∫ T

t

ru du

)
(ST −K)+

]
= Stf

(
Vt, ϑ, rt, qt, τ,

K

St

)
, (6)

where we denote CSVJ
t to emphasize that it is SVJ model implied.9 We derive an explicit

formulation for f and the relating numerical calculation in Appendix A.

2.4 Estimation

In this section, we present the method for estimating the parameters in Eq. (1), (2) by

employing time-series data of S&P 500 index’s spot and option prices {St, Ct}. Our model,

indicated in Eq. (6), offers analytical tractability, demonstrating the joint dynamics of spot

and option prices through two state variables, (S, V ). We utilize the ”implied-state” gener-

alized method of moments (IS-GMM) approach, as outlined in Pan (2002). This technique

transforms observed option prices to imply the latent variable Vt as if it were directly ob-

served, and then estimates the parameters in Eq. (5) by matching the moments condition

of (S, V ).

9The put option price, under our model, is derived similarly, and can be implied by put-call parity.
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Our moment conditions build on two time-series variables – the underlying index returns

and the latent stochastic volatility. From time t − ∆t to t, the time-t log-return of the

S&P 500 index is defined as

yt = lnSt − lnSt−∆t − rt − qt, (7)

for a short time interval ∆t. In our estimation, we employ daily frequency data as a proxy

for a short time interval of a year, with rt, qt derived from the same frequency data. To

streamline notation, we designate the short time interval ∆t as one unit of time, replacing

t−∆t with t− 1 throughout the remainder of the paper.

We further extract the stochastic volatility Vt from a near to at-the-money call option

with around 30 days away from expiration. When presented with the market price at time t,

denoted as C30,ATM, of the at-the-money call option where the ratio K/St ≈ 1, the stochastic

volatility Vt is discerned as:

C30,ATM
t = CSVJ

t = Stf

(
Vt, ϑ, rt, qt, τ,

K

St

)
, (8)

where ϑ represents the model parameters to be estimated along with the latent state variable

Vt, and where we select the call option C30,ATM
t from all the available options at time t such

that its strike-to-spot ratio K
St

is closest to one and the time-to-expiration τ is closest to 30

days. Using Eq. (7) and (8), we can express the joint dynamics of yt, Vt as a function of

the time-series data of the S&P 500 index’s spot and option prices {St, C
30,ATM
t } and the

parameter set ϑ = (κv, v̄, σv, ρ, λ, µ, σJ , η
s, ηv, µ∗).

The IS-GMM methodology depicts the joint moments of (yt, Vt), transformed from the

time-series data
{
St, C

30,ATM
t

}
t=1...T

, as a function of parameters in ϑ and the latent variable

V . Consistent with Pan (2002), we employ seven conditional moments of (yt, Vt) at time t−1.

We designate M1 (Vt−1, ϑ) = Eϑ
t−1 (yt) ,M2 (Vt−1, ϑ) = Eϑ

t−1 (y
2
t ) ,M3 (Vt−1, ϑ) = Eϑ

t−1 (y
3
t ),

andM4 (Vt−1, ϑ) = Eϑ
t−1 (y

4
t ) to denote the first four conditional moments of return. We label

M5 (Vt−1, ϑ) = Eϑ
t−1 (Vt) and M6 (Vt−1, ϑ) = Eϑ

t−1 (V
2
t ) as the first two conditional moments

of volatility. Lastly, we allow M7 (Vt−1, ϑ) = Eϑ
t−1 (ytVt) to denote the first cross moment of

return and volatility. We commence with the following moment conditions10:

Eϑ
t−1 (εt) = 0, εt =

[
εy1t , ε

y2
t , ε

y3
t , ε

y4
t , ε

v1
t , ε

v2
t , ε

yv
t

]⊤
, (9)

where

10A recursive formula to calculate the conditional moments of (yt, Vt) is derived in Pan (2002).
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εy1t = yt −M1 (Vt−1, ϑ) , εv1t = Vt −M5 (Vt−1, ϑ) ,

εy2t = y2t −M2 (Vt−1, ϑ) , εv2t = V 2
t −M6 (Vt−1, ϑ) ,

εy3t = y3t −M3 (Vt−1, ϑ) , εyvt = ytVt −M7 (Vt−1, ϑ) ,

εy4t = y4t −M4 (Vt−1, ϑ) .

To identify the ten parameters in ϑ, we introduce three instrument moments using the

lagged value Vt−1,
11

Eϑ
t−1

(
εy1t Vt−1

)
= 0, Eϑ

t−1

(
εy2t Vt−1

)
= 0, Eϑ

t−1

(
εy3t Vt−1

)
= 0. (10)

Besides using the moment conditions from (yt, Vt), we further incorporate one in-the-money

(ITM) call option with maturity around 30 days and one at-the-money (ATM) call option

with maturity around 60 days to better identify the jump risk and the account for long-term

information. We form two extra moment conditions to minimize the percentage pricing error

of our model on these two options.12 Suppose the observed market prices of these two options

at time t is C60,ATM
t and C30,ITM

t , and the theoretical prices using our model given the same

set of state variable and the parameter set ϑ is C60,ATM
t,model (ϑ) and C

30,ITM
t,model(ϑ), we can write the

moment conditions as,

Eϑ
t−1

(
ε30,ITM
t

)
= 0, ε30,ITM

t =
C30,ITM

t,model(ϑ)− C30,ITM
t

C30,ITM
t

,

Eϑ
t−1

(
ε60,ATM
t

)
= 0, ε60,ATM

t =
C60,ATM

t,model (ϑ)− C60,ATM
t

C60,ATM
t

.

(11)

Together with Eq. (9), (10) and (11), we have a system of 12 moment conditions to identify

the 10 parameters. We stack the vector ht across t = 1...T and compute the sample average

of the moment conditions as,

GT (ϑ) =
1

T

∑
n⩽N

h
(
yt, V

ϑ
t , ϑ

)
.

11The moment condition we select here is different from Pan (2002), which applies an efficient transform
of the seven moments using a conditional instruments proposed by Hansen (1985). This method provides
more efficiency for estimation yet requires more computing time for numerical derivatives. Since we have
more observations nowadays, we apply our current method to save computing time and relies on the larger
sample to reduce the standard error of parameters.

12We choose in-the-money (ITM) calls instead of out-the-money (OTM) since the ITM calls has higher
magnitude of price, which helps us to get stable optimization convergence.

11



The IS-GMM estimator is hence,

ϑ̂ = argmin
ϑ∈Θ

GT (ϑ)
⊤WTGT (ϑ),

where W is the weighting matrix, which is usually selected as the inverse of the covariance

matrix of GT (ϑ).

2.5 Data

The S&P 500 index option and spot prices used to estimate our model and construct the

CIX are obtained from the OptionMetrics database. Our sample spans from January 1996

to December 2021. We calculate the price of each option as the average of its bid and ask

price. Excluded from our analysis are options with zero open interest, zero bid prices, and

missing implied volatility or delta. The latter typically arises for options with non-standard

settlement or for options with an intrinsic value exceeding the current mid-price. We also

utilize the daily composite dividend yield data for the S&P 500 from OptionMetrics, as

well as daily interest rate data interpolated from zero coupon certificate of deposit rates.

Daily index return data is sourced from the Center for Research in Security Prices (CRSP).

Besides the option price data, we further use the volatility surface data interpolated by

OptionMetrics to check the robustness of our model estimation and CIX index.

To investigate the factors that influence variations in our CIX measure, we acquire daily

VIX data from the Chicago Board Options Exchange (CBOE) website. Furthermore, we

obtain macroeconomic variables such as the term spread and default spread from the Federal

Reserve Economic Data (FRED) website.

3 Option-Implied Crash Index

3.1 Infer Crash Risk from Option Prices

In our model estimation, the time-series of a few options, with the focus on the at-the-money

options, are used to estimate the model parameters ϑ = (κv, v̄, σv, ρ, λ, µ, σJ , η
s, ηv, µ∗) and

back out the latent stochastic volatility Vt. Extending to options not used in our estimation,

their information with respect to the risk-neutral crash risk (i.e., the mean jump size µ∗) may

differ from that of the model estimation. In particular, the out-of-the-money put options can

offer valuable insights into the left tail of the risk-neutral distribution. To take advantage of

the crash information contained in the market prices of such options, we use the estimated

SVJ model to back out a mean jump size µI
t (τi, Ki) specific to each option i at time t, while

12



keeping fixed all other parameters ϑ⊥ = (κv, v̄, σv, ρ, λ, µ, σJ , η
s, ηv) and the time-t stochastic

volatility Vt.

To be more specific, consider a put option at time t that has a strike price Ki and a

time-to-expiration τi. Under the SVJ model, the implied pricing for this option is given by:

P SVJ
t

St

= f

(
Vt, ϑ

⊥, µ∗, rt, qt, τi,
Ki

St

)
− e−qtτ +

Ki

St

e−rtτ ,

where ϑ⊥ and µ∗ are the estimated model parameters and Vt is the latent stochastic volatility

backed out from the at-the-money option at time t. We employ the put price in determin-

ing our crash risk metric since that put options inherently provide a richer context about

downside risk. With the aid of put-call parity, this is reflected using the function f , which

represents the scaled call option price under our model with respect to the spot price.

The SVJ model implied mean jump size µI
t (τi, Ki) for this option is such that,

PMarket
t

St

= f

(
Vt, ϑ

⊥, µI
t (τi, Ki), rt, qt, τi,

Ki

St

)
− e−qtτ +

Ki

St

e−rtτ , (12)

where PMarket
t is the market price of that put option. We fix the state variable Vt and every

other model parameter, excluding µ∗, and imply the jump size µI to match the market price

of the put option.

Our methodology bears resemblance to the vast literature on the ”volatility surface”,

which uses the Black-Scholes model as a benchmark with a constant volatility and extends it

to infer σI (τi, Ki) across options with different maturities and strike prices. However, in our

case, we consider the state-dependent jump diffusion model as a benchmark with a constant

jump size µI and extend it to infer a complete surface of crash risk priced across all options.

Leveraging the strengths of the implied-state estimator, our method effectively distin-

guishes between the pricing impacts of stochastic volatility and jump size. Additionally, as

verified in related literature, our benchmark state-dependent jump diffusion model effectively

captures option pricing. Consequently, our extension to imply jump sizes should accurately

reflect the dynamic variation of market crash risk pricing and capture the conditional infor-

mation of investors’ forward-looking crash expectations.

Our model produces a broad set of implications. For instance, one could analyze the

pattern of µI (τi, Ki) across various strike prices to explore a concept similar to the ”implied

volatility smirk” frequently discussed in the existing literature—what we might term a ”jump

risk premium surface.” However, this paper primarily focuses on the temporal changes in the

jump risk premium and how these fluctuations impact the stock market. In line with this

focus, we introduce the Crash Index (CIX)—an index that encapsulates the average jump

13



risk premiums derived from short-term, out-of-the-money options.

3.2 Construct the Crash Index (CIX)

The calculation of the Crash Index (CIX) is conceptually similar to that of the Volatility

Index (VIX). Each day, we select two expiration dates such that their maturities are the

closest to 30 days, with τ1 ≤ 30 < τ2. The focus is primarily on out-of-the-money (OTM)

put options slated to expire on these dates to devise a 30-day normalized CIX measure.13

Specifically, we target at put options with strike prices around 95% of the current spot price

and assess the implied jump size µI
t for options with strike prices between 93% to 97% of

the spot price to compute the average implied jump size,14

µI(τi=1,2) =
1

Ni

Ni∑
s=1

µ(τi, Ks), s.t.
Ks

S
∈ [0.93, 0.97].

Using options strike prices in our selected range instead of a single option around 95% ensures

the robustness of our crash risk measure. We then interpolate the implied jump size at the

two expiration dates to construct a 30-day measure of forward-looking jump risk premium.

CIXt = −µI
t (τ1) ∗

τ2 − 30

τ2 − τ1
− µI

t (τ2) ∗
30− τ1
τ2 − τ1

(13)

This methodology can also be applied to approximate a crash risk index for a forward-

looking period that’s shorter or longer than 30 days. However, we choose the 30-day measure

as our primary output, as it aligns with the conventions in the literature and bears resem-

blance to the construction of the VIX. Specifically, the VIX index is formulated as

V IXt = 100 ∗
√
σI
t (τ1)

2 ∗ τ2 − 30

τ2 − τ1
+ σI(τ2)2 ∗

30− τ1
τ2 − τ1

, (14)

where σI
t (τi=1,2)

2 represents the non-parametric second moment implied from option prices.15

Similar to the VIX construction, we normalize the CIX to 30-day maturity and focus on the

crash risk implied from short-date options. For robustness, we construct crash risk index

with various maturities and found that all such indexes with different maturities exhibit

13For a simpler expression, we count τ1, τ2 by days to compare with the target 30-days. In our pricing
formula and estimation, τ is in yearly unit. And we interpolate the maturity to 30/365 year.

14At the beginning of our sample period, the OTM options in this range may not be available as we
filtered out some illiquid prices. In such cases, we average put options such that K/S ∈ [0.9, 1]

15This methodology can be checked on the CBOE website: https://cdn.cboe.com/api/global/us_

indices/governance/Volatility_Index_Methodology_Cboe_Volatility_Index.pdf

14

https://cdn.cboe.com/api/global/us_indices/governance/Volatility_Index_Methodology_Cboe_Volatility_Index.pdf
https://cdn.cboe.com/api/global/us_indices/governance/Volatility_Index_Methodology_Cboe_Volatility_Index.pdf


similar dynamics.16

The non-parametric moments method stems from literature using OTM options to infer

the risk-neutral distribution of asset returns (see derivations in Breeden and Litzenberger

(1978), and density estimation, e.g., Aı̈t-Sahalia and Lo (1998)). Besides the second mo-

ments presented by VIX, the Crash Index is more pertinent to the third moments, or skew-

ness implied from option prices, as measured by Bakshi et al. (2003). Within our parametric

framework, both the level of volatility and the jump size parameter µ∗ drive the level of skew-

ness, motivating us to isolate the role of crash risk by CIX in addition to using the skewness

index to test asset pricing implications. We derive the second and third moments under

SVJ models to harmonize our methods with the non-parametric measure in the subsequent

section.

3.3 Relation to the Non-Parametric Approach

We begin by presenting the construction of risk-neutral moments as described in Bakshi et al.

(2003), and then align this with our parametric framework. The return over a period of τ at

time t can be expressed through the logarithm of the price relative: R(t, τ) = lnSt+τ − lnSt.

The risk-neutral moments are then defined as

V (t, τ) = EQ
t

[
exp

(
−
∫ T

t

ru du

)(
R(t, τ)− EQ

t [R(t, τ)]
)2
]
,

W (t, τ) = EQ
t

[
exp

(
−
∫ T

t

ru du

)(
R(t, τ)− EQ

t [R(t, τ)]
)3
]
.

(15)

We construct the skewness index as

SKEWt(τ) = − W (t, τ)

V (t, τ)3/2
, (16)

where the negative sign is incorporated to reflect the general observation that risk-neutral

skewness is predominantly negative.

As derived in Bakshi et al. (2003), the non-central moments in these equations are

16In addition, we test CIX using a volume-weighted jump size. The result is highly similar.
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EQ
t

[
exp

(
−
∫ T

t

ru du

)
R(t, τ)2

]
=

∫ ∞

S(t)

2
(
1− ln

[
K
S(t)

])
K2

C(t, τ ;K)dK

+

∫ S(t)

0

2
(
1 + ln

[
S(t)
K

])
K2

P (t, τ ;K)dK,

EQ
t

[
exp

(
−
∫ T

t

ru du

)
R(t, τ)3

]
=

∫ ∞

S(t)

6 ln
[

K
S(t)

]
− 3

(
ln
[

K
S(t)

])2

K2
C(t, τ ;K)dK

−
∫ S(t)

0

6 ln
[
S(t)
K

]
+ 3

(
ln
[
S(t)
K

])2

K2
P (t, τ ;K)dK.

These moments can be computed using a collection of out-of-the-money (OTM) put and

call options to approximate the integrals. Moreover, the risk-neutral first moment can be

inferred from the forward contract price.

The derivation above shows that the risk-neutral variance V (t, τ) corresponds to the VIX

index’s construction when τ is set to 30 days. To achieve a more accurate approximation of

the integral, we employ the volatility surface data for each day and interpolate 1000 points

of the strike price K in a wide range to determine OTM put and call option prices. This

process enables us to create a stable approximation of VIX and, similarly, the third moments

and skewness in Eq. (16).

Unlike the non-parametric approach, which depends on the entire collection of options

to gauge skewness, our methodology enables the estimation of the crash parameter for each

individual option, allowing a focus on those contracts that are informationally richer.

We also compare our custom CIX construction with the risk-neutral skewness in our

empirical analyses. To lay the groundwork for these tests, we first align our parametric model

with the non-parametric construction of moments. Specifically, we derive the two moments

in Eq. (15) using the data-generating process of the SVJ model, relegating the intricate

derivations to Appendix B, and briefly discuss the influence of crash risk on skewness. Under

the SVJ process outlined in Eqs. (1) and (2), the demeaned return is given as

R(t, τ)− EQ
t [R(t, τ)] = (λ(−µ∗)− 1/2)

∫ t+τ

t

(Vu − E0 [Vu]) du+

∫ t+τ

t

√
Vu dW (1)

u

+

∫ t+τ

t

dJu − λµQ
J

∫ t+τ

t

E0 [Vt] du.
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The terms
∫ t+τ

t
(vu − E0 [Vu]) du and

∫ t+τ

t

√
Vu dW

(1)
u represent the future shocks of stochas-

tic volatility and stock prices, respectively, and exhibit negative correlation, captured by a

negative ρ. Moreover,
∫ t+τ

t
dJu − λµQ

J

∫ t+τ

t
E0 [Vt] du encompasses all the jump innovations

in stock prices and has a third moment equal to:

λµJ

∫ t+τ

t

E0 [Vt] du
(
µ2
J + 3σ2

J

)
.

With all else being equal, the jump size µ∗ influences negative skewness in two ways. Firstly,

a more negative µ∗ heightens the negative covariance between stock price and volatility by

the coefficient λ(−µ∗)−1/2. Secondly, given a direct relationship between µ∗ and µJ , a more

severe crash in µ∗ suggests more negative third moments contributed by the jump process.

We further illustrate the relation between CIX and non-parametric skewness in the empirical

results section.

4 Empirical Results

In this section, we present the results from our Stochastic Volatility-Jump (SVJ) model

estimation, subsequently examining the Crash Index (CIX) and its potential implications.

4.1 Model Estimation

Panel A of Table 1 provides a detailed view of our parameter estimates. Significantly, µ∗—the

focal parameter of our research—stands at an annualized -16.16 percent, demonstrating sta-

tistical significance. Our results also highlight a substantial jump intensity λ and a negative

correlation between stochastic volatility and stock returns, represented by the ρ parameter.

Additionally, kv = 5.88 signifies the mean-reversion coefficient under the physical measure,

while the difference kv − ηv approximates to 2.6, serving as the mean-reversion coefficient

under the risk-neutral measure. Accordingly, our findings concur with the established view

that option-implied volatility mean-reversion is more sluggish. To provide further insight

into our state-dependent jump model, we present the estimated conditional jump arrival

intensity per year in Figure 1. The time series of this option-implied jump intensity har-

monizes with the dynamics of option-implied volatility. Although the jump intensity λVt is

mean-reverting, it can reach extreme values during periods of market turbulence, and these

extremes become more pronounced over time. The average jump arrival intensity per year

is around 0.63.

In Panel B of Table 1, we encapsulate the model’s proficiency in fitting the joint moments

of (yt, Vt). By normalizing all residuals of the moments in equation (9) using their respective
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standard deviations, we present the mean and T-statistics values. None of the joint moments

of (yt, Vt) significantly deviate from zero. In summary, our estimates not only render robust

economic interpretations, but they also resonate with the original estimator in Pan (2002).

Despite our refined sampling and moment selection strategies, our estimation benefits from

a longer sample and ensures efficiency.

4.2 Implied Volatility Curve and Crash Risk Curve

To illustrate the performance of our model in fitting option prices across varying moneyness

levels, we employ the interpolated Black-Scholes implied volatility surface data sourced from

OptionMetrics. Leveraging the volatility surface has become standard practice for sifting

outliers and depicting how price patterns shift with changing strike prices and maturities.

We employ our estimates to determine option prices and subsequently convert these model-

fitted prices using the Black-Scholes (BS) implied volatility function. This normalization

allows for a direct comparison with the volatility surface data.

In congruence with the VIX and our formulation of the CIX, our focus rests on the 30-

day maturity data within the volatility surface. By keeping the maturity constant, we can

plot a curve showcasing the option-implied σI relative to strike prices. For any given day

t, σI
t (k) is characterized as a function of normalized moneyness, represented by k = K/S.

In Panel (a) of Figure 2, we plot the daily average of σI
t against moneyness k. As widely

acknowledged in the literature, the volatility curve demonstrates a consistent behavior within

the range k ∈ [0.9, 1.0], aligning with the observed ”volatility smirk” phenomenon where out-

of-the-money (OTM) puts are priced notably higher in comparison to the predictions of the

Black-Scholes model.17

As depicted in Figure 2, our model adeptly mirrors the observed disparity between OTM

and at-the-money (ATM) options, fitting snugly with the implied volatility curve present

in the data. Additionally, we introduce an alternative curve derived by setting µ∗ = µ

while maintaining other variables constant. This adjusted curve eliminates the crash risk’s

influence, attributing the disparity solely to stochastic volatility. As anticipated, the modified

curve, devoid of crash risk considerations, deviates significantly from the data, underscoring

the pivotal role of crash risk embedded within option prices.

To further elucidate the pronounced role of crash risk inherent in option prices, we apply

our novel methodology to imply a jump size for each option. Drawing parallels with the

volatility curve, we pivot away from the Black-Scholes model, which estimates the option-

17Our analysis emphasizes the moneyness range of OTM put options to accentuate the influence of crash
risk. We ascertain that the crash risk curve for in-the-money (ITM) puts is minimally informative.
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implied σI across varying strike prices. Instead, we deploy the SVJ model to infer the

option-implied µ across different strike prices, all the while holding other model parameters

and the estimated latent state variable constant. Utilizing the surface data, we extract

the associated option price and deduce a jump risk premium µ∗
t (τi, Ki) for every option

characterized by maturity τi and strike price Ki, as detailed in Eq. (12):

µI
t (τi, Ki) = gµ

(
f, Vt, ϑ

⊥, rt, qt, τi,
Ki

St

)
.

This computational approach facilitates a head-to-head comparison between our deduced µ∗

surface and the existing implied volatility surface.18 Our focus remains anchored on the 30-

day maturity, and we depict the daily average of −µI
t in relation to normalized moneyness

k = K
S

to craft a crash-risk curve, as presented in Panel (b) of Figure 2. It’s crucial to

highlight that our methodology derives the latent state variable predominantly from ATM

options. As a result, the ATM µI coherently aligns with our comprehensive sample estimate.

Consequently, the variation of µI across strike prices, particularly for k < 1, in the crash

curve elucidates the discernible disparity between OTM and ATM options. This divergence

goes beyond what the SVJ models project, shedding light on the nuances of jump risk.

Unlike the monotonic trend of implied volatility curve, the crash risk curve exhibits a

distinctive U-shape over the short term (30 days). Notably, OTM options with a moneyness

ranging between 0.95 and 0.98 insinuate a markedly negative jump size. This nuanced pattern

aligns with the prevailing sentiment: the most frequently traded OTM put options would

be profoundly influenced by looming future crashes. In response, we sculpt CIX by taking

the average of −µ∗, predominantly focusing on strike prices nestled within this illuminating

range.

The divergence in the shapes underscores the distinct influences of crash risk and volatil-

ity. Together, they unravel the intricacies differentiating out-of-the-money (OTM) and at-

the-money (ATM) options. To quantify this variance, we estimate the gap between the

implied volatilities prevalent in the OTM and ATM moneyness domains. Our metric for this

divergence is articulated as:

IVsprdt =
1

Ni

Ni∑
s=1

σI
t (ks)− σI

t (k = 1), s.t.ks ∈ [0.93, 0.97], (17)

where σI
t (k) typifies the implied volatility associated with the 30-day volatility surface at

each juncture t. We introduce this implied volatility spread, henceforth dubbed as IVsprd,

18We also investigate the CIX constructed from the µI computed by crash surface. The constructed
variable highly correlates with the CIX from price data yet is smoother.
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as an instrumental metric. It offers insights into the chasm between OTM and ATM option

prices, which have been transposed to the volatility realm to ensure uniformity in units.

The subsequent section will delve deeper, juxtaposing this time series against the volatility

magnitude exemplified by the VIX and the crash risk encapsulated by the CIX.

4.3 Explaining the Dynamics of CIX

Given the observed patterns in the crash risk curve and our successfully estimated model,

we construct the daily CIX as delineated in previous sections and examine its time-series

dynamics. We depict the time-series of the CIX alongside the VIX and SKEW in Figure 3.

To reduce noise, we apply an Exponential Weighted Moving Average (EWMA) to CIX, VIX,

and other related variables. The EWMA of a time-series Xt is defined as

EMA(X, η)t−1 = (1− η)
t−1∑
τ=0

ητXt−τ−1.

Contrary to what one might expect, and as our initial hypothesis suggested, the VIX

and the jump risk premium encompassed in the CIX function as two distinct risk sources,

showing minimal co-movement over time. Unlike traditional uncertainty measures, the CIX

encapsulates investors’ anticipation of crash risk, a trend particularly noticeable during the

Covid sample period. Moreover, the option implied SKEW reveals a strong co-movement

with CIX. This co-movement further validates our estimation of jump size since µ∗ drives

the major variation of the skewness, as derived under our SVJ model. Notably, both the

moving averages of CIX and SKEW peaked in October and November 2017—a unique period

that did not witness a crash in the stock market but rather experienced a rally of over five

percent. Moreover, the VIX hit a historic low of 9.14 on 11/03. The fact that a pronounced

divergence between OTM and ATM options captured in CIX occurs when VIX is extremely

low highlights the difference between CIX and VIX in driving asset pricing patterns.

To elucidate this distinction and gain a deeper understanding of the dynamics of related

variables, we present summary statistics for CIX, VIX, the skewness index (SK), and implied

volatility spread (IVsprd) in Panel A of Table 2. This includes the mean, standard deviation

(Std), and correlations for CIX, VIX, SKEW, IVsprd, and the index return over the entire

sample period. Remarkably, our CIX measure is less persistent than VIX, with an auto-

regressive coefficient of 0.71, and shows only a weak correlation with both the volatility

index and index returns. Furthermore, the option-implied skewness, a parallel measure of

the crash risk impact, is influenced by both the CIX and VIX indexes. The correlation

between SKEW and VIX reveals the advantage of CIX as a more refined measure of crash
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risk, controlling for the volatility risk in our parametric framework. In line with expectations,

both the VIX and CIX correlate with the IVsprd, signifying two components that drive the

disparity between OTM and ATM options. On the one hand, CIX positively explains the

spread since a higher jump size µ∗ signifies a greater difference between OTM and ATM

options. On the other hand, a higher level of volatility tends to flatten the volatility surface,

as OTM options exhibit lower sensitivity to volatility (Vega). This pattern clarifies the

negative relationship between IVsprd and VIX.

To delve deeper into these differences, we analyze the relationship between the innovations

of CIX, VIX, SKEW, and IVsprd. We define the innovations of these variables as,

∆Xt = Xt − EMA(X, η = 0.7)t−1, X = {CIX, V IX, SKEW, IV sprd}.

This definition allows us to isolate unexpected shocks in the time-series by accounting for

the past values’ exponential moving average, with a slow decay rate of η = 0.7 to smooth

out noise, considering our CIX measure’s lower persistence.19 As presented in Panel B of

Table 2, the innovations in CIX exhibit a weak correlation with VIX and the index return.

Similarly, the innovations in SKEW and IVsprd correlate with both ∆CIX and ∆V IX.

Further, in Table 3, we delve into the association between a related variable, denoted as

Xt, and the dynamics of CIX. We employ the following regression:

∆CIXt = constant + b ∆Xt + controls, (18)

Before advancing to our regression analysis, it’s pertinent to emphasize that we employ the

Newey-West estimator across all standard errors in this study to cater to potential serial

correlation and heteroskedasticity. In alignment with the correlation matrix outcomes, both

the option-implied skewness and the disparity between OTM and ATM implied volatility

significantly influence the dynamics of CIX. By adopting an alternative indicator, we compute

the daily ratio of put option to call option volume (P/C). Intriguingly, this volume-centric

ratio exhibits a positive sway over CIX, suggesting that trading volume embodies insights

about various risk resources. In a multivariate regression, these relationships retain their

significance.

Transitioning beyond risk metrics sourced from option data, our inquiry extends to un-

covering potential ties between ∆CIXt and a slew of risk metrics derived from bond prices,

thereby illuminating any overlap between jump risk and other risk reservoirs. We evaluate

the bond price noise measure (Noise) as presented in Hu et al. (2013), the term spread (es-

19We apply a slow decay rate to smooth out the noise by setting η = 0.7, given our CIX measure’s lower
persistence.
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tablished by the differential between 10-year and 2-year treasury yields termed as (Term)),

the TED spread (defined by the differential between the three-month Treasury bill rate and

the three-month LIBOR denominated in U.S. dollars), and the default spread (gauged by

the yield discrepancy between the AAA and BAA corporate bond index (Dsprd)). When

subjected to a multivariate regression, none of these metrics showcase a significant impact

on our jump risk assessment. Interestingly, a fragile link materializes between the bond

price noise metric and CIX. Despite this metric’s origin from bond prices, which ostensi-

bly diverges from the SPX-indexed CIX, it spurs an exploration into liquidity’s influence

on CIX dynamics. Through this lens, we account for 13rd Friday, a placeholder for the third

Friday of each month — a recurrent expiration day for a plethora of options. Acknowledging

this pivotal expiration window, CIX registers a substantial uptick, thus underscoring latent

illiquidity facets.

Additionally, we introduce lagged values of both CIX and VIX to scrutinize the resilience

of how various parameters elucidate crash risk dynamics. Incorporating these controlling

metrics largely preserves our initial conclusions. Ultimately, a consolidated regression en-

compassing all investigated variables is formulated to shed light on interactive effects. Here,

a pronounced negative correlation emerges between CIX and the term spread, even after

accounting for stock market-centric variables. Given that the term spread is indicative of

macroeconomic risk, this inverse relationship proposes that CIX encapsulates a unique risk

spectrum distinct from conventional risk determinants. In addition, an amplified positive link

between CIX and the bond market’s liquidity metric fortifies our stance that CIX potentially

flags illiquidity components.

4.4 Reconciling with Option-Implied Skewness

To further illustrate the impact of crash risk, we use our derivation in the Appendix B to

present the skewness as a function of jump size µ∗ and ρ with all other parameters equal

to our estimator and V fixed to be the whole sample average. This exercise allows us to

plot the skewness as a function of µ∗, and ρ, respectively, in Figure 4. In Panel (a) of this

figure, we plot the relation between skewness and µ∗. Intuitively, as µ∗ gets more negative,

the distribution turns more negatively skewed. In addition, the relation reveals a concave

function such that, when µ∗ decreases, the skewness rapidly drops to a drastic level of around

-7/-8. In comparison, the correlation also plays a monotonic role on skewness yet presents a

more flat function curve and a lower level of negative skewness, as shown in the Panel (b).

Specifically, even when ρ reaches -1, the skewness under our calibration is still at a moderate

level of around -1.15.
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Supported by our theoretical derivations and observable patterns in the data, we establish

a robust correlation between CIX and skewness, despite their distinct emphases and empirical

properties. Specifically, SKEW aims to estimate the moments of the risk-neutral density

and, therefore, relies on both separate risk sources examined in this paper: VIX and CIX.

Although the skewness measure is highly related to the jump size, it is also related to the

level of stochastic volatility. Concurrently, the current level of Vt steers both the second and

third moments, and hence, the skewness. Drawing on these insights, we fashion our CIX

as a distinct measure of crash risk, adjusting for the impact of Vt, rather than resorting to

skewness, which is contingent on both crash and stochastic volatility risks. Additionally, as

outlined in Table 2, our measure of crash risk (CIX) exhibits more time-series fluctuations

and more extreme values compared to SKEW. This result aligns with our perspective that

CIX is an improved measure of crash risk, designed to capture the tail behavior of asset

prices.

In the Panel (a) of Figure 5, we juxtapose the non-parametric measure of skewness with

the skewness implied by our model under various parameter configurations. Specifically,

we investigate the model-implied skewness driven by stochastic volatility Vt, maintaining

constant parameters, consistent with our estimation using ATM options. The observed co-

movement between the non-parametric and model-implied measures corroborates our SVJ

model estimation. We also explore a variant of model-implied skewness by setting ρ = 0, and

as anticipated, this altered time-series closely resembles the original model-implied skewness,

reflecting the limited impact of ρ on skewness.

Moreover, in the Panel (b) of Figure 5, we portray skewness using time-varying CIX ex-

tracted from OTM options, in contrast to the µ∗ estimated from ATM options. Notably, the

skewness implied by time-varying CIX demonstrates significant fluctuations and a more pro-

nounced magnitude. This observation is congruent with the volatile dynamics and valuable

information extracted from OTM options to form CIX. From this standpoint, CIX serves as

a superior crash risk measure, emphasizing the tail events of asset pricing dynamics rather

than simply revealing attributes of a stable risk-neutral distribution.

4.5 Time-Series Predictability

Given CIX’s aptitude in capturing tail crash risk, we further elucidate its asset pricing im-

plications by examining the stock market’s reaction to pronounced shifts in CIX. In Table 4,

we track the market’s performance following marked fluctuations in CIX, paving the way for

a deeper understanding of market dynamics intertwined with crash risk. To spotlight these

extreme events, we focus on the days where CIX’s innovation surpasses its top percentiles.
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Formally, we define these extreme shifts as:

∆CIXt ≥ Q(∆CIXt, α),

with Q(CIX, α) representing the α-th percentile of the entire time series of ∆CIXt. Em-

ploying this threshold, we pinpoint the days where CIX’s escalation signifies a tail event of

low occurrence likelihood and calculate the average stock index return for the ensuing day.

Panel A of Table 4 reveals that a pronounced surge in CIX, identified by the 2% percentile,

precedes a notable decline of 47.4 basis points in the index return. This decline is in stark

contrast to the general sample mean ranging between 3 and 4 basis points. As we expand

our examination to encompass tail events within the top 5%, 10%, and 15% percentiles, the

magnitude of the index return’s decrease post a CIX elevation becomes less pronounced but

remains significant.

In a contrasting vein, we align our examination with findings for VIX as described in Hu

et al. (2022). The results unveil that a pronounced elevation in VIX typically heralds positive

returns for the S&P 500 index. In line with this, we observe that a surge in VIX occurring

with a rarity of less than 2% leads to a significant increase of 59.88 basis points in the

stock market return. This upward momentum is sustained even as the threshold percentile

is expanded. The divergence in the implications of CIX and VIX concerning subsequent

stock market trends underscores the imperative of differentiating jump risk from stochastic

volatility risk, a central motif of our discourse.

Furthermore, we replicate this analysis for option-implied skewness and implied volatility

spread. The spikes in SKEW similarly foreshadow a noteworthy negative index return, albeit

at a reduced magnitude. Contrarily, increases in IVsprd do not correlate with significant

next-day returns. These observations resonate with our thesis that both SKEW and IVsprd

are influenced by crash and volatility risks, thereby conveying limited insights into potential

future market crashes.

Furthermore, to delve into the informational richness of our option-implied jump risk

measure, we probe into the stock market’s reaction following a significant dip in the CIX,

identified on days when

∆CIXt ≤ Q(∆CIXt, 1− α).

The subsequent day’s stock market return post such sharp declines is examined and jux-

taposed against the returns observed after significant spikes in all examined variables, as

determined by the bottom percentile.

Remarkably, a sharp decline in the CIX, specifically within the 2% rarity bracket, heralds
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an average index return of a positive 20.28 basis points the following day. While this uplift is

not as pronounced as the downturn incited by burgeoning crash apprehensions (as delineated

in prior tests), it underscores a compelling trend. In the case of VIX, our analysis reveals that

marked drops do not presage any consequential shifts in index returns. This insight helps

to differentiate jump risk from volatility risk, the latter showing an asymmetric behavior: a

high VIX typically portends a market downturn, but this inverse relationship softens when

the VIX is low.

For comparative analysis, in the event of a precipitous decline in both SKEW and IVsprd,

the ensuing day witnesses a markedly positive return. This phenomenon can be traced back

to their inversely proportional relationship with VIX; a swift dip in SKEW or IVsprd is

likely concurrent with a surge in VIX, thereby setting the stage for positive returns on the

subsequent day. Intriguingly, extreme oscillations in skewness and the implied volatility

spread seem to divulge limited insights into impending market crashes. This observation

reinforces our stance: both variables are influenced by both CIX and VIX. It accentuates

the imperative to carve out CIX as a distinct crash risk barometer.

As depicted in Figure 3, post the 2008 financial crisis, the crash index unveils a discernible

upward trajectory coupled with diminished volatility. Piqued by this observation, we explore

if the informational value embedded in CIX evolved post-crisis. Delineating our analysis in

Table 4’s Panel B and C into two sub-periods—pre and post-2008—we discern that CIX’s

predictive prowess was largely contained within the pre-2008 era and witnessed a tapering

post the financial meltdown. Furthermore, post-2008, CIX’s volatility ebbed, manifesting in

fewer tail events where it experienced sharp surges. Such a configuration implies a heightened

efficiency in forecasting imminent crash risks, diluting the predictive capability of crash risk

inferred from option prices. Yet, even amidst this milieu of reduced predictability, the efficacy

of CIX remained unscathed during tumultuous phases. A case in point: during the Covid-

19 pandemic onslaught, on March 13, CIX catapulted to 27.54 percent from its preceding

day’s value of 17.96. This stark spike in perceived jump risk, as mirrored in option prices,

culminated on the subsequent trading day, March 16—widely termed the ”Black Monday”.

The markets were ensnared in a turmoil, with the indices plummeting by a staggering 12-

13%.

Our empirical findings consistently demonstrate a strong inverse relationship between

∆CIX and subsequent daily stock market returns. We extend our analysis to examine

whether this negative correlation between CIX and future stock returns remains unaffected

by spikes in other variables, especially the option-implied moments embodied in VIX and

SKEW. Utilizing the same tail-event dummy variable,
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1∆Xt = 1∆Xt>Q(∆Xt,0.9),

where X = CIX, V IX, SKEW , we incorporate them into our predictive model for the next-

day index return. This approach enables us to assess the effects of tail events when CIX

surges and to account for possible interactions with VIX and SKEW. For example, besides

the tail dummy of CIX itself, 1∆CIXt , we include 1∆V IXt and the product term 1∆CIXt1∆V IXt

to control for simultaneous extreme changes in both CIX and VIX.

In Table 5, we display the results of this regression employing tail dummy variables.

Consistent with earlier findings, a single dummy regression using CIX or SKEW forecasts a

negative return, while using VIX anticipates a positive return. Importantly, the interaction

terms with VIX do not significantly influence subsequent returns, highlighting the separate

nature of risk surges in CIX and VIX. Moreover, factoring in interactions with SKEW does

not diminish the predictive strength of CIX. Indeed, considering both tail events enhances

the predictive potency of CIX as an early indicator of impending market declines.

In summary, our evidence underlines that a surge in CIX symbolizes an increase in

forward-looking crash risk as perceived by investors, thereby presaging negative future stock

returns. We clarify this conclusion through the following predictive regressions:

Rett+1 = constant + b1∆CIXt + b21∆CIXt + controls.

Here, the regular terms with coefficients b1 utilize ∆CIX as a predictor, while the tail-

dummy with coefficients b2 captures the effect at tail events when CIX shows a significant

rise. We include this test in the end of Table 5 and find that both the two variables negatively

predict stock returns.

In conclusion, our empirical research highlights a potent inverse correlation between the

Crash Index (CIX) and future stock market returns. Importantly, this compelling relation-

ship remains robust irrespective of the shifts in uncertainty as captured by the VIX index

nor the non-parametric measure of skewness. This pronounced link is particularly evident

during instances of abrupt and extreme CIX fluctuations, underscoring the profound impact

of elevated forward-looking crash risk as a significant short-term determinant in asset pricing

dynamics.

5 Conclusions

In this paper, we have pioneered a methodology to gauge forward-looking crash risk as

implied from option prices. Utilizing the tractable SVJ model, this parametric approach iso-
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lates the jump size component from the stochastic volatility encapsulated within uncertainty

risk. Our method extends beyond the traditional Black-Scholes model, paralleling the con-

struction of the implied volatility surface and facilitating the creation of an option-implied

crash-risk curve. This framework uniquely empowers us to extract crash risk insights from

OTM options while simultaneously controlling for latent state variables.

Our method’s efficacy is underscored by its strong correlation with non-parametric option-

implied skewness. Nevertheless, we have crafted our CIX as a nuanced measure of crash risk,

designed to adjust for the influence of Vt, and illuminate the tail risk aspects of asset pricing

dynamics. In juxtaposition, option-implied skewness is reliant on both crash and stochastic

volatility risks and epitomizes the more smooth characteristics of the risk-neutral density.

Empirically, we unearth a persistent negative relationship between spikes in the CIX index

and subsequent stock market index returns. This association endures even after accounting

for other option-implied risk measures and underscores the valuable insights that OTM put

options offer regarding impending market crashes.

Looking ahead, our innovative method for implying crash risk offers fertile ground for fu-

ture research. Extensions beyond the SVJ model can pave the way to uncover additional risk

resources that influence option price deviations. Such exploration could lead to a more com-

prehensive examination of the corresponding asset pricing implications, further enhancing

our understanding of market dynamics and risks.
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6 Tables and Figures
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Figure 1: Model estimated conditional jump intensity, measured in number of
times per year. The conditional jump intensity is λVt per year. We use the IS-GMM
approach specified in Eq. (9), and extract the stochastic volatility Vt from a near to at-the-
money call option with around 30 days to maturity as in Eq. (8). The dashed red line plots
the average arrival intensity, which is around 62 % per year.
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Figure 2: BS Implied Volatility and SVJ Model Implied Jump Size Plotted against
Strike-to-Spot Ratio Drawing from the 30-day volatility surface data, we juxtapose the
BS implied volatility σI with the SVJ model implied µI , as outlined in Eq. (12), against
the strike-to-spot ratio k = K/S. Within Panel (a), the data-driven implied volatility curve
is represented by a red line, while its model-fitted counterpart appears in blue. In addition,
we plot the model-fitting implied volatility when µ∗ = µ, i.e., the jump size under the risk-
neutral and physical measures are equal. In Panel (b), we plot the µI implied from 30-day
surface data in the red line, and mark the whole sample average in the blue line.
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Figure 3: Time Series of CIX, VIX, and SKEW. To reduce noise, we apply an Expo-
nential Weighted Moving Average (EWMA) to CIX, VIX, and SKEW. The construction of
CIX and SKEW is in Eq. (13) and (16), respectively. The EWMA of a time-series Xt is
defined as EMA(X, η)t−1 = (1−η)

∑t−1
τ=0 η

τXt−τ−1.We set η = 0.97 in this plot. The shaded
areas are NBER recession periods.
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(a) Skewness as a function of jump size

(b) Skewness as a function of correlation

Figure 4: Risk-Neutral Skewness as a Function of the Jump Size and Price-
Volatility Correlation . We use our SVJ model specified in Eqs. (3) and (4) to compute
the risk-neutral moments and skewness defines in Eqs. (15) and (16). We use our derivation
in the Appendix B to present the skewness as a function of jump size µ∗ and ρ with all else
being equal and V equals the whole sample average. ρ is the correlation between Brownian
motions in stock price and stochastic volatility dynamics.
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Figure 5: Non-parametric and Model-implied Skewness. In Panel (a), we showcase the
non-parametric measure of skewness as articulated in Eq. (16). The blue line represents this
non-parametric measure, whereas the red line depicts the skewness implied by our model, as
calculated using our estimated parameters and Vt. Additionally, the green line introduces a
variant where we set the stock price-volatility correlation, ρ, to zero. In Panel (b), diverging
from the reliance on µ∗ estimated from ATM options for calculating the model-implied
skewness, the red line represents skewness derived using the time-varying CIX, extracted
specifically from OTM options.
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Table 4: Average Next-Day SPX Returns After Tail Events

Average Daily SPX Returns (bps) in the Whole Sample

following large increases of following large reductions of

P(Tail) CIX VIX Skew IVSprd P(Tail) CIX VIX Skew IVSprd

2% -47.41 59.88 -29.08 -23.87 2% 20.28 -4.99 25.22 35.70
[-2.89]∗∗∗ [2.03]∗ [-2.03]∗∗∗ [-1.47] [1.70] [-0.26] [1.46] [1.92]

5% -28.96 29.73 -24.84 -12.63 5% 19.55 -3.39 21.32 30.17
[-3.39]∗∗∗ [2.14]∗ [-3.27]∗∗∗ [-1.42] [2.47]∗∗ [-0.34] [2.33]∗ [2.99]∗∗∗

10% -18.29 17.52 -13.31 -9.76 10% 11.60 4.25 22.08 21.59
[-3.44]∗∗∗ [2.12]∗ [-2.56]∗∗∗ [-1.66] [2.24]∗ [0.71] [3.93]∗∗∗ [3.52]∗∗∗

15% -12.16 14.04 -12.23 -6.53 15% 8.32 3.72 19.13 18.99
[-2.89]∗∗∗ [2.36]∗∗ [-3.10]∗∗∗ [-1.46] [2.00]∗ [0.83] [4.49]∗∗∗ [4.01]∗∗∗

Average Daily SPX Returns (bps) in the Pre-2008 Sample

following large increases of following large reductions of

P(Tail) CIX VIX Skew IVSprd P(Tail) CIX VIX Skew IVSprd

2% -42.11 86.39 -26.50 -44.95 2% 29.51 -33.55 33.54 37.52
[-2.36]∗∗ [1.91] [-1.43] [-2.54]∗∗∗ [1.58] [-1.24] [1.60] [1.80]

5% -32.92 45.63 -16.08 -35.47 5% 23.94 -12.64 27.16 26.28
[-3.14]∗∗∗ [2.18]∗ [-1.57] [-3.27]∗∗∗ [2.13]∗ [-0.85] [2.52]∗∗ [2.13]∗

10% -25.40 19.41 -16.92 -27.60 10% 11.44 -0.35 18.91 29.33
[-3.48]∗∗∗ [1.59] [-2.47]∗∗ [-3.28]∗∗∗ [1.70] [-0.04] [2.52]∗∗ [3.53]∗∗∗

15% -21.29 16.09 -17.68 -17.10 15% 11.39 -3.98 21.55 24.88
[-3.74]∗∗∗ [1.83] [-3.05]∗∗∗ [-2.56]∗∗∗ [2.12]∗ [-0.60] [3.69]∗∗∗ [3.85]∗∗∗

Average Daily SPX Returns (bps) in the Post-2008 Sample

following large increases of following large reductions of

P(Tail) CIX VIX Skew IVSprd P(Tail) CIX VIX Skew IVSprd

2% -29.22 41.70 -35.14 -6.16 2% 39.55 19.84 11.50 21.74
[-1.20] [1.09] [-1.55] [-0.22] [1.71] [0.75] [0.42] [0.74]

5% -9.30 13.57 -20.58 -3.86 5% 11.71 7.59 20.26 5.33
[-0.74] [0.73] [-1.85] [-0.29] [0.90] [0.56] [1.44] [0.35]

10% -4.14 13.66 -4.60 -3.52 10% 0.23 8.52 18.56 7.71
[-0.55] [1.23] [-0.66] [-0.42] [0.03] [1.06] [2.26]∗ [0.80]

15% -4.04 11.99 -2.76 -0.40 15% 1.04 9.55 18.11 12.03
[-0.71] [1.49] [-0.52] [-0.06] [0.18] [1.60] [2.96]∗∗∗ [1.74]

∗, ∗∗, and ∗∗∗ represent significance of the two-tail test at the 5%, 2%, and 1% level, respectively.

Reported are the average next-day returns on the SP&500 index after large increases and reductions in the option-
implied risk measures. CIX is the crash index, VIX is the volatility index, Skew is the negative of the non-parametric
skewness defined in Eq. (16), and IVsprd is the difference in implied volatilities between OTM puts and ATM options
defined in Eq. (17). We identify tail events by large increases/reductions in the risk measures using the percentile as
a cutoff value. P(Tail) indicates the frequency of such Tail occurrence, where we use the associating percentile as the
cutoff. Reported in the squared brackets are the t-stats of the average daily returns.
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Table 5: Predict SPX Returns

Dependent Variable: Day t+ 1 SPX Returns

1∆CIXt -24.65 -20.20 -23.34 -3.59
[-4.39]∗∗∗ [-4.27]∗∗∗ [-2.90]∗∗∗ [-2.34]∗∗

1∆VIXt 15.14 22.62
[2.32∗∗] [3.08]∗∗∗

1∆SKEWt -19.11 -13.11
[-3.71]∗∗∗ [-2.01]∗∗

1∆CIXt × 1∆VIXt -36.98
[-1.51]

1∆CIXt × 1∆SKEWt 9.16
[0.68]

∆CIXt -6.29 -4.11
[-4.20]∗∗∗ [-2.44]∗∗∗

constant 6.36 2.37 5.81 4.25 7.07 3.21 4.40
[4.76]∗∗∗ [1.75] [4.46]∗∗∗ [3.07]∗∗∗ [5.13]∗∗∗ [3.08]∗∗∗ [3.89]∗∗∗

R2(%) 0.37 0.14 0.22 0.65 0.43 0.40 0.48
∗, ∗∗, and ∗∗∗ represent significance of the two-tail test at the 5%, 2%, and 1% level, respectively.

We use 1∆Xt = 1∆Xt>Q(∆Xt,0.9), as tail-dummy variable for CIX, VIX, and SKEW to
predict the next day returns Rett+1. Here, Q(∆Xt, 0.9) is the 90 % quantile for the
innovations of each variables. Reported in the squared brackets are the t-stats calculated
using Newey-West standard errors.
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Appendices

Appendix A Option pricing

This appendix provides option pricing under the risk-neutral dynamics specified in Eqs. (3)

and (4). Our derivation is a simplified version of the Appendix B in Pan (2002), where we

take the interest rate r and dividend yield q as constant in the option pricing formula yet

we update the r and q as if it is a constant per day in our empirical specification.

For any c ∈ C, the time- t conditional transform of lnST , when well defined, is given by

ψϑ (c, Vt, r, q, τ) = exp (−rτ) EQ
t

[
−ec lnST

]
.

Under certain integrability conditions (Duffie et al. (2000)),

ψϑ(c, v, r, q, τ) = exp (αv (c, τ, ϑ, ) + βv(c, τ, ϑ)v +βrr + βqq) , (A.1)

where the coefficients in Eq. (B.1) αv, βr, βq, and βv are defined by

βv(c, t, ϑ) = − a (1− exp (−γvt))
2γv − (γv + b) (1− exp (−γvt))

,

αv(c, t, ϑ) = −κ
∗
vv̄

∗
v

σ2
v

(
(γv + b) τ + 2 ln

[
1− γv + b

2γv

(
1− e−γvτ

)])
βr = (c− 1)τ

βq = −c ∗ τ,

where b = σvρc− κ∗v, a = c(1− c)− 2λ [exp (cµ∗
J + c2σ2

J/2)− 1− cµ∗], and γv =
√
b2 + aσ2

v .

The parameters superscripted by ∗ denote the risk-neutral counterparts of those under the

data-generating measure P . For example, κ∗v = κv − ηv and v̄∗ = κvv̄/κ
∗
v are the risk-neutral

mean-reversion rate and long-term mean, respectively, and µ∗
J = ln (1 + µ∗) − σ2

J/2 is the

risk-neutral counterpart of µJ . While the square root and logarithm of a complex number

z are not uniquely defined, for notational simplicity the results are presented as if we are

dealing with real numbers. To be more specific, we define,
√
z = |z|1/2 exp(i arg(z)/2) and

ln(z) = ln |z|+i arg(z), where for any z ∈ C, arg(z) is defined such that z = |z| exp(i arg(z)),
with −π < arg(z) ⩽ π Letting kt = Kt/St be the time- t ”strike-to-spot”” ratio, the time- t

price of a European-style call option with time-to-expiration τt can be calculated as

Ct = Stf (Vt, ϑ, r, q, τt, kt)
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where f : R+ ×Θ× R+ × R+ × R+ × R+ → [0, 1] is defined by

f(v, ϑ, r, q, τ, k) = P1 − kP2

with

P1 =
ψ(1, v, r, q, τ)

2
− 1

π

∫ ∞

0

Im
(
ψ(1− iu, v, r, q, τ)eiu(ln k)

)
u

du

P2 =
ψ(0, v, r, q, τ)

2
− 1

π

∫ ∞

0

Im
(
ψ(−iu, v, r, q, τ)eiu(ln k)

)
u

du

(A.2)

where Im(·) denotes the imaginary component of a complex number.

It should be noted that, whenever applicable, all of expectations and probability calcu-

lations in this appendix are taken with respect to the riskneutral measure Q. Further, with

the simplified assumption that r and q are constant,

ψ(1, v, r, q, τ) = exp(−qτ), ψ(0, v, r, q, τ) = exp(−rτ)

We calculate P1 = ψ(1)P̃1 and define P̃1 as a real probability that can be calculated through

the standard Lévy inversion formula to match compute an ”in the money probability” using

the characteristic function,

P̃1 = P
(
X̃1 ⩽ x̄

)
=

1

2
− 1

π

∫ ∞

0

Im
(
ψ̃1(u) exp(−iux̄)

)
u

du.

where x̄ = (r − q) τ − ln k, and where the random variable X̃1 is uniquely defined by its

characteristic function ψ̃1(u) via

ψ̃1(u) =
ψ(1− iu) exp (iu (rt − qt) τ)

ψ(1)
.

The calculation for P2 is done similarly by presenting P2 = ψ(0)P̃2, and defining

P̃2 = P
(
X̃2 ⩽ x̄

)
=

1

2
− 1

π

∫ ∞

0

Im
(
ψ̃2(u) exp(−iux̄)

)
u

du.

where x̄ = (r − q) τ − ln k, and where the random variable X̃2 is uniquely defined by its

characteristic function ψ̃2(u) via

ψ̃2(u) =
ψ(−iu) exp (iu (rt − qt) τ)

ψ(0)
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Appendix B Relation to Non-parametric Moments

For simplicity, we assume the dividend yield q = 0, and the short rate r is a constant in

this section. For our purpose, we focus our calculation in Q measure and leave out the Q

notation. The stock price St satisfies

dSt = Strdt+ St

√
VtdB1,t(Q) + dZQ

t − µ∗StλVtdt

The jump process dZQ
t is defined as in our model, with jump intensity λVt and a log normal

jump size. The stochastic variance Vt is given by

dVt = −κv (Vt − v̄) dt+ σv
√
VtdBv,t(Q),

where the shocks,

dBv,t(Q) =
(
ρdB1,t(Q) +

√
1− ρ2dB2,t(Q)

)
.

Note that under the Q measure, the parameters of stochastic volatility are transferred such

that,

κQv = κv − ηv, v̄Q = v̄
κv

κv − ηv
.

Since we focus on the Q measure, we directly used the transferred parameters in the rest of

our calculation and leave out the Q notation.

Without loss of generality, we fix the time 0 and compute expectation at time T . The

cumulative log return in this period is,

RT =

∫ T

0

d lnStdt =

∫ T

0

(
r − 1

2
Vt

)
dt+

√
VtdB1,t(Q) +

∫ T

0

dJt −
∫ T

0

µ∗λVtdt.

The jump process in d lnSt is simply a Poisson compound process with jump intensity λVt

and a normal distribution jump ∼ N(µQ
J , σJ). The jump size µ∗ in dSt satisfies,

µ∗ = exp(µQ
J + σ2

J/2)− 1

The demeaned return is,

RT−E0 [RT ] = − (λµ∗ + 1/2)

∫ T

0

(Vt − E0 [Vt]) dt+

∫ T

0

√
VtdB1,t+

∫ T

0

dJt−λµQ
J

∫ T

0

E0 [Vt] dt
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To compute the first and second moments, we define,

XT =

∫ T

0

√
VtdB1,t, YT =

∫ T

0

(Vt − E0 [Vt]) dt,

JT =

∫ T

0

dJt − λµQ
J

∫ T

0

E0 [Vt] dt.

The shocks in log return are hence separated into three terms

RT − E0 [RT ] = XT − (λµ∗ + 1/2)YT + JT

The last term JT , as the cumulative jump process, is independent from the shocks in Brow-

nian motions, and hence independent from XT , YT . Its second and third moments is simply

derived as,

E0

[
J2
T

]
= λσ2

J

∫ T

0

E0 [Vt] dt, E0

[
J3
T

]
= λµJ

(
µ2
J + 3σ2

J

) ∫ T

0

E0 [Vt] dt

Note that,

E0 (Vt) = v̄ + (V0 − v̄) e−κt

Vt − E0 (Vt) = σv

∫ t

0

e−κv(t−u)
√
VudB

v
u,

hence, ∫ T

0

E0 [Vt] dt =
1− e−κvT

κv
(V0 − v̄) + v̄T.

The moments of JT are solved.

XT and YT has negative covariance and co-skewness due to the correlation between shocks

in dVt and dSt, we denote

HT = XT − (λµ∗ + 1/2)YT ,

and compute the second and third moments.

The variance of HT can be obtain by using Ito Isometry,

E0

[
H2

T

]
=

∫ T

0

EQ
0 [Vu] du

− (2λµ∗ + 1)

∫ T

0

ρσv
1− e−κv(T−u)

κv
EQ
0 [Vu] du

+(λµ∗ + 1/2)2
∫ T

0

σ2
v

(
1− e−κv(T−u)

)2
κ2v

EQ
0 [Vu] du

43



We now present the three terms as,

E0

[
H2

T

]
= A− (2λµ∗ + 1)B + (λµ∗ + 1/2)2C,

where,

A =

∫ T

0

EQ
0 [Vu] du,

B =

∫ T

0

ρσv
1− e−κv(T−u)

κv
EQ
0 [Vu] du,

C =

∫ T

0

σ2
v

(
1− e−κv(T−u)

)2
κ2v

EQ
0 [Vu] du.

We now derive A,B,C respectively. For the interest of saving space, we leave out the

middle steps and only present necessary equations. The first term, A =
∫ T

0
EQ
0 [Vu] du is

simple to compute,

A =

∫ T

0

EQ
0 [Vu] du =

1− e−κvT

κv
(V0 − v̄) + v̄T.

The second term, B =
∫ T

0
ρσv

1−e−κv(T−u)

κv
EQ
0 [Vu] du, is presented as:

B =

∫ T

0

ρσv
1− e−κv(T−u)

κv

[
e−κvu (V0 − v̄) + v̄

]
du.

We split the this integral into two terms,

B1 =

∫ T

0

ρσv
1− e−κv(T−u)

κv
e−κvu (V0 − v̄) du,

B2 =

∫ T

0

ρσv
1− e−κv(T−u)

κv
v̄du.

To simplify the calculation, we change the variable of the integral by letting x(u) = eκvu,

such that du = 1
κv
x−1dx. Then the first term equals to,

B1 =
ρσv (V0 − v̄)

κ2v

(
1− e−κvT − e−κvT (κvT )

)
.

Similarly, the second term in B equals,

B2 =
ρσvv̄

κ2v

(
κvT − 1 + e−κvT

)
.
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B is the sum of B1, B2.

Similarly, C is presented as,

C =

∫ T

0

σ2
v

(
1− e−κv(T−u)

)2
κ2v

[
e−κvu (V0 − v̄) + v̄

]
du.

We split it into two terms,

C1 =

∫ T

0

σ2
v

(
1− e−κv(T−u)

)2
κ2v

e−κvu (V0 − v̄) du,

C2 =

∫ T

0

σ2
v

(
1− e−κv(T−u)

)2
κ2v

v̄du.

We also use the change of variable method here to simplify the integral. C1 equals to,

C1 =
σ2
v (V0 − v̄)

κ3v

(
1− 2e−κvT (κvT )− e−2κvT

)
.

C2 equals to,

C2 =
σ2
v v̄

κ3v

(
κvT − 2

(
1− e−κvT

)
+ 1/2

(
1− e−2κvT

))
.

The third term is the sum of C1, C2.

So far, we derived the second moments as the sum of E0 [H
2
T ]+E0 [J

2
T ]. The third moments

of HT is more complicated, such that

E0

[
H3

T

]
= E0

[
X3

T

]
−3 (λµ∗ + 1/2) E0

[
X2

TYT
]
+3 (λµ∗ + 1/2)2 E0

[
XTY

2
T

]
−(λµ∗ + 1/2)3 E0

[
Y 3
T

]
We now compute the above moments separately. Applying the Ito’s lemma on the

X3
T , X

2
TYT , XTY

2
T , Y

3
T respectively gives,

E0

(
X3

T

)
= 3ρσv

∫ T

0

1− e−κv(T−u)

κv
E0 (Vu) du = 3B,

where B is the same as in the calculation for the second moment. The next moment is

derived as,

E0

(
X2

TYT
)
= σ2

v

∫ T

0

[(
1− e−κv(T−u)

κv

)2

+ 2ρ2
1− e−κv(T−u) − κv(T − u)e−κv(T−u)

κ2v

]
E0 (Vu) du.
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We compute this moment as,

E0 (X
2
TYT ) =

1
2κ3

v(
−e−(2T )κv

(
2(V0 − v̄) + v̄ − 2e(2T )κv(V0 − v̄) (1 + 2ρ2) + 4eTκv v̄ (−1 + (−2− Tκv)ρ

2)
)
+

e−Tκv
(
−2(V0 − v̄) (2ρ2 + T 2κ2vρ

2 + 2Tκv (1 + ρ2)) + eTκvv̄ (−3− 8ρ2 + 2T (κv + 2κvρ
2))

))
σ2
v .

Similarly,

E0

(
XTY

2
T

)
= ρσ3

v

∫ T

0

[
2
1− e−κv(T−u) − κv(T − u)e−κv(T−u)

κ2v

1− e−κv(T−u)

κv

]
E0 (Vu) du

+ρσ3
v

∫ T

0

[
1− e−2κv(T−u) − 2κv(T − u)e−κv(T−u)

κ3v

]
E0 (Vu) du

We compute this moment as,

E0 (XTY
2
T ) =

1
κ4
v
e−2Tκv ((−3V0 + 2v̄ − T (2V0 − v̄)κv)+

2eTκv(−2− Tκv)(−2v̄ − T(−V0 + v̄)κv) + e2Tκv(3V0 + v̄(−10 + 3 Tκv))
)
ρσ3

v .

In the end,

E0

(
Y 3
T

)
= 3σ4

v

∫ T

0

[
1− e−2κv(T−u) − 2κv(T − u)e−κv(T−u)

1−e−κv(T−u)

κv

]
E0 (Vu) du.

We compute as,

E0

(
Y 3
T

)
=

1

2κ5v

(
e−Tκv

(
2eTκv v̄(−8 + 3Tκv)− 3(V0 − v̄)

(
−1 + 2Tκv + 2T 2κ2v

))
+ e−3Tκv(

(−3V0 + v̄) + 6e3Tκv(V0 − v̄) + 6eTκv(v̄ + Tv̄κv + V0(−1− 2 Tκv)) + 6e2Tκv (v̄ (3 + 2 Tκv))
))
σ4
v
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